Open Access. Powered by Scholars. Published by Universities.®

Physical Processes Commons

Open Access. Powered by Scholars. Published by Universities.®

2010

Discipline
Institution
Keyword
Publication
Publication Type

Articles 1 - 17 of 17

Full-Text Articles in Physical Processes

The Interaction Of Rock And Water During Shock Decompression: A Hybrid Model For Fluidized Ejecta Formation, Audrey Hughes Rager Dec 2010

The Interaction Of Rock And Water During Shock Decompression: A Hybrid Model For Fluidized Ejecta Formation, Audrey Hughes Rager

UNLV Theses, Dissertations, Professional Papers, and Capstones

Crater and ejecta morphology provide insight into the composition and structure of the target material. Martian rampart craters, with their unusual single-layered (SLE), double-layered (DLE), and multi-layered ejecta (MLE), are the subject of particular interest among planetary geologists because these morphologies are thought to result from the presence of water in the target. Also of interest are radial lines extending from the crater rim to the distal rampart of DLE craters. Exactly how these layered ejecta morphologies and radial lines form is not known, but they are generally thought to result from interaction of the ejecta with the atmosphere, subsurface …


3d Heliospheric Simulations Of Heavy Neutral Particles From The Interstellar Medium, Akito Kawamura Oct 2010

3d Heliospheric Simulations Of Heavy Neutral Particles From The Interstellar Medium, Akito Kawamura

Von Braun Symposium Student Posters

No abstract provided.


Candle In The Wind: Probing The Solar Wind Structure Using Interplanetary Scintillation Data, Tae K. Kim Oct 2010

Candle In The Wind: Probing The Solar Wind Structure Using Interplanetary Scintillation Data, Tae K. Kim

Von Braun Symposium Student Posters

No abstract provided.


Studying Gravitational Lensing Effect Using Grb From Fermi Mission, Roderick Davidson Oct 2010

Studying Gravitational Lensing Effect Using Grb From Fermi Mission, Roderick Davidson

Von Braun Symposium Student Posters

No abstract provided.


The Roles Of Tidal Evolution And Evaporative Mass Loss In The Origin Of Corot-7 B, Brian Jackson, Neil Miller, Rory Barnes, Sean N. Raymond, Jonathan J. Fortney, Richard Greenberg Sep 2010

The Roles Of Tidal Evolution And Evaporative Mass Loss In The Origin Of Corot-7 B, Brian Jackson, Neil Miller, Rory Barnes, Sean N. Raymond, Jonathan J. Fortney, Richard Greenberg

Brian Jackson

CoRoT-7 b is the first confirmed rocky exoplanet, but, with an orbital semimajor axis of 0.0172 au, its origins may be unlike any rocky planet in our Solar system. In this study, we consider the roles of tidal evolution and evaporative mass loss in CoRoT-7 b's history, which together have modified the planet's mass and orbit. If CoRoT-7 b has always been a rocky body, evaporation may have driven off almost half its original mass, but the mass loss may depend sensitively on the extent of tidal decay of its orbit. As tides caused CoRoT-7 b's orbit to decay, they …


Absolute Ground-State Nitrogen Atom Density In A N2/Ch4 Late Afterglow: Talif Experiments And Modelling Studies, Et. Es-Sebbar, M.-C. Gazeau, Y. Benilan, A. Jolly, C D. Pintassilgo Aug 2010

Absolute Ground-State Nitrogen Atom Density In A N2/Ch4 Late Afterglow: Talif Experiments And Modelling Studies, Et. Es-Sebbar, M.-C. Gazeau, Y. Benilan, A. Jolly, C D. Pintassilgo

Dr. Et-touhami Es-sebbar

Following a first study on a late afterglow in flowing pure nitrogen post discharge, we report new two-photon absorption laser-induced fluorescence (TALIF) measurements of the absolute ground-state atomic nitrogen density N(4S) and investigate the influence of methane introduced downstream from the discharge by varying the CH4 mixing ratio from 0% up to 50%. The N (4S) maximum density is about 2.2 × 1015 cm−3 in pure N2 for a residence time of 22 ms and does not change significantly for methane mixing ratio up to ~15%, while above, a drastic decrease is observed. The influence of the residence time has …


Experimental And Theoretical Studies On Nitrogen Plasma And Methane Photolysis: Implications For Laboratory Simulations Of Titan’S Atmosphere, M-C. Gazeau, Y. Benilan, E. Arzoumanian, Et. Es-Sebbar, A. Jolly Jul 2010

Experimental And Theoretical Studies On Nitrogen Plasma And Methane Photolysis: Implications For Laboratory Simulations Of Titan’S Atmosphere, M-C. Gazeau, Y. Benilan, E. Arzoumanian, Et. Es-Sebbar, A. Jolly

Dr. Et-touhami Es-sebbar

No abstract provided.


Spectroscopic Studies Applied To Uvis Observations Of Titan, Y. Benilan, F. Capalbo, Et. Es-Sebbar, N. Fray, A. Jolly, M-C. Gazeau, J-C. Guillemin, M. Schwell Jul 2010

Spectroscopic Studies Applied To Uvis Observations Of Titan, Y. Benilan, F. Capalbo, Et. Es-Sebbar, N. Fray, A. Jolly, M-C. Gazeau, J-C. Guillemin, M. Schwell

Dr. Et-touhami Es-sebbar

No abstract provided.


Talif Investigation And Modelling Of The Absolute N(4s) Density In A N2-Ch4 Late Afterglow, C.D. Pintassilgo, Et. Es-Sebbar, Y. Benilan, M-C. Gazeau, A. Jolly Jul 2010

Talif Investigation And Modelling Of The Absolute N(4s) Density In A N2-Ch4 Late Afterglow, C.D. Pintassilgo, Et. Es-Sebbar, Y. Benilan, M-C. Gazeau, A. Jolly

Dr. Et-touhami Es-sebbar

The purpose of the present work is the experimental and numerical study of the absolute ground-state nitrogen atoms density N(4S) in the late afterglow of a pure N2 flowing microwave discharge in which different amounts of CH4 have been injected at 25 cm downstream from the nitrogen discharge. The absolute N(4S) concentrations have been measured using Two-photon Absorption Laser-Induced Fluorescence (TALIF), while a detailed kinetic model has been developed to simulate both the discharge and the post-discharge regions. Theoretical predictions are then compared to experimental measurements.


Combined Experimental And Theoretical Studies On Methane Photolysis At 121.6 Nm And 248 Nm- Implications On A Program Of Laboratory Simulations Of Titan’S Atmosphere, C. Romanzin, E. Arzoumanian, Et. Es-Sebbar, A. Jolly, S. Perrier, M.-C. Gazeau, Y. Bénilan Jul 2010

Combined Experimental And Theoretical Studies On Methane Photolysis At 121.6 Nm And 248 Nm- Implications On A Program Of Laboratory Simulations Of Titan’S Atmosphere, C. Romanzin, E. Arzoumanian, Et. Es-Sebbar, A. Jolly, S. Perrier, M.-C. Gazeau, Y. Bénilan

Dr. Et-touhami Es-sebbar

Methane is, together with N2, the main precursor of Titan’s atmospheric chemistry. In our laboratory, we are currently developing a program of laboratory simulations of Titan’s atmosphere, where methane is intended to be dissociated by multiphotonic photolysis at 248 nm. A preliminary study has shown that multiphotonic absorption of methane at 248 nm is efficient and leads to the production of hydrocarbons such as C2H2 (Romanzin et al., 2008). Yet, at this wavelength, little is known about the branching ratios of the hydrocarbon radicals (CH3, CH2 and CH) and their following photochemistry. This paper thus aims at investigating methane photochemistry …


Temperature-Dependent Photoabsorption Cross-Section Of Cyano-Diacetylene In The Vacuum Uv, N. Fray, Y. Bénilan, M.-C. Gazeau, A. Jolly, M. Schwell, E. Arzoumanian, Et. Es-Sebbar, T. Ferradaz, J.- C. Guillemin Jun 2010

Temperature-Dependent Photoabsorption Cross-Section Of Cyano-Diacetylene In The Vacuum Uv, N. Fray, Y. Bénilan, M.-C. Gazeau, A. Jolly, M. Schwell, E. Arzoumanian, Et. Es-Sebbar, T. Ferradaz, J.- C. Guillemin

Dr. Et-touhami Es-sebbar

Using synchrotron radiation as a tunable VUV light source, we have measured, for the first time, the absolute photoabsorption cross sections of HC5N with a spectral resolution of 0.05 nm in the region between 80 and 205 nm from 233 to 298 K. The measured cross sections are used to predict the HC5N photodestruction rate in the solar system and to model a transmission spectrum in Titan's atmosphere. Comparing the latter with that acquired by the Ultraviolet Imaging Spectrograph on board the Cassini spacecraft, we have determined an upper limit of 2.7 × 10−5 on the HC5N abundance at 1100 …


Stirring Up The Pot: Can Cooling Flows In Galaxy Clusters Be Quenched By Gas Sloshing?, J. A. A. Zuhone, M. Markevitch, R. E. Johnson Jun 2010

Stirring Up The Pot: Can Cooling Flows In Galaxy Clusters Be Quenched By Gas Sloshing?, J. A. A. Zuhone, M. Markevitch, R. E. Johnson

Dartmouth Scholarship

X-ray observations of clusters of galaxies reveal the presence of edges in surface brightness and temperature, known as "cold fronts." In relaxed clusters with cool cores, these commonly observed edges have been interpreted as evidence for the "sloshing" of the core gas in the cluster's gravitational potential. Such sloshing may provide a source of heat to the cluster core by mixing hot gas from the cluster outskirts with the cool-core gas. Using high-resolution N-body/Eulerian hydrodynamic simulations, we model gas sloshing in galaxy clusters initiated by mergers with subclusters. The simulations include merger scenarios with gas-filled and gasless subclusters. The …


Study Of Accretion Effects Of Transients In Lmxb System, Quentin Lamicq Jun 2010

Study Of Accretion Effects Of Transients In Lmxb System, Quentin Lamicq

Physics

Neutron stars are intriguing stellar laboratories that are very exciting to study due to the presence of matter in an extreme state. The luminosity of some neutron star transients in low mass X-ray binary (LMXB) systems is known to have quiescent intervals that may be affected by the rate and duration of accretion from the companion star onto the neutron star. We refined a model of the luminosity of the neutron star to allow for possibility that the accretion rate declines at a steady rate until it reaches zero. After a neutron star goes through an outburst, the quiescent period …


Bandwidth In Bolometric Interferometry, R. Charlassier, Emory F. Bunn, J.-Ch. Hamilton, J. Kaplan, S. Malu May 2010

Bandwidth In Bolometric Interferometry, R. Charlassier, Emory F. Bunn, J.-Ch. Hamilton, J. Kaplan, S. Malu

Physics Faculty Publications

Context. Bolometric interferometry is a promising new technology with potential applications to the detection of B-mode polarization fluctuations of the cosmic microwave background (CMB). A bolometric interferometer will have to take advantage of the wide spectral detection band of its bolometers to be competitive with imaging experiments. A crucial concern is that interferometers are assumed to be significantly affected by a spoiling effect known as bandwidth smearing.

Aims. We investigate how the bandwidth modifies the work principle of a bolometric interferometer and affects its sensitivity to the CMB angular power spectra.

Methods. We obtain analytical expressions for …


Evaluation Of Interplanetary Magnetic Field Tracing Models Using Impulsive Seps, Brian P. Elliott Mar 2010

Evaluation Of Interplanetary Magnetic Field Tracing Models Using Impulsive Seps, Brian P. Elliott

Theses and Dissertations

Current Interplanetary Magnetic Field (IMF) models are evaluated in this study to determine which model(s) perform an accurate representation of this magnetic structure. These IMF models include the Parker Spiral model, the Potential Field Source Surface (PFSS) model, the Wang-Sheeley-Arge (WSA) model and the ENLIL model. Impulsive Solar Energetic Particles (SEPs) are used as tracers to determine the magnetic structure of the IMF and provide source locations for model comparisons. Each individual model is analyzed, compared to the identified solar source region and a longitude/latitude offset of these traces assigned. The model connection of the PFSS and Parker models is …


Limit On Continuous Neutrino Emission From Neutron Stars, Itzhak Goldman, Shmuel Nussinov Jan 2010

Limit On Continuous Neutrino Emission From Neutron Stars, Itzhak Goldman, Shmuel Nussinov

Mathematics, Physics, and Computer Science Faculty Articles and Research

The timing data of the binary pulsar PSR1913+16, are used to establish an upper limit on the rate of continuous neutrino emission from neutron stars. Neutrino emission from each of the neutron stars of the binary system, increases the star binding energy and thus translates to a decrease in their masses. This in turn implies an increase with time of the binary period. Using the pulsar data we obtain an upper limit on the allowed rate of mass reduction: vertical bar M vertical bar < 1.1 x 10(-12) yr(-1) M, where M is the total mass of the binary. This constrains exotic nuclear equations of state that predict continuous neutrino emissions. The limit applies also to other channels of energy loss, e. g. axion emission. Continued timing measurements of additional binary pulsars, should yield a stronger limit in the future.


Begin The Adventure : How To Break The Light Barrier By A.D. 2079 (3rd Ed.), Florentin Smarandache, Homer B. Tilton Jan 2010

Begin The Adventure : How To Break The Light Barrier By A.D. 2079 (3rd Ed.), Florentin Smarandache, Homer B. Tilton

Branch Mathematics and Statistics Faculty and Staff Publications

This edition, the third, has undergone a subtle name change, going from "A.D. 2070" in the title to A.D. 2079 as the timeline is fine-tuned. Because of the almost universal failure to recognize the distinction between physical (reality-based, dynamical) and visual (appearance-based, kinematical) variables, a tremendous volume of mythology arose over the past 100 years centered around Einstein's reality view of the distortions of special relativity. To get a sense of it, we point the reader to Paul J. Nahin's heroic book, Time Machines, 2nd ed.,- to these Tech Notes in particular: TN#6. "A High-Speed Rocket Is a One-Way Time …