Open Access. Powered by Scholars. Published by Universities.®

Instrumentation Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Instrumentation

Climatology Of Deep O+ Dropouts In The Night-Time F-Region In Solar Minimum Measured By A Langmuir Probe Onboard The International Space Station, Shantanab Debchoudhury, Aroh Barjatya, Joseh I. Minow, Victoria N. Coffey, Linda N. Parker Jul 2022

Climatology Of Deep O+ Dropouts In The Night-Time F-Region In Solar Minimum Measured By A Langmuir Probe Onboard The International Space Station, Shantanab Debchoudhury, Aroh Barjatya, Joseh I. Minow, Victoria N. Coffey, Linda N. Parker

Publications

The Floating Potential Measurement Unit (FPMU) onboard the International Space Station includes a Wide sweeping Langmuir Probe (WLP) that has been operating in the F-region of the ionosphere at ∼400 km since 2006. While traditional Langmuir probe estimates include critical plasma parameters like electron density and temperature, we have also extracted the O+ percentage from the total ion constituents. This O+ composition dataset from the recent minimum in the Solar Cycle 24 reveals orbits with dropouts in O+ to below 80% of the total background ion density at ISS orbital altitudes. The observed O+ percentages during these dropouts are much …


Gps Phase Scintillation At High Latitudes During Geomagnetic Storms Of 7–17 March 2012 – Part 1: The North American Sector, P. Prikryl, R. Ghoddousi-Fard, E. G. Thomas, J. M. Ruohoniemi, S. G. Shepherd Jun 2015

Gps Phase Scintillation At High Latitudes During Geomagnetic Storms Of 7–17 March 2012 – Part 1: The North American Sector, P. Prikryl, R. Ghoddousi-Fard, E. G. Thomas, J. M. Ruohoniemi, S. G. Shepherd

Dartmouth Scholarship

During the ascending phase of solar cycle 24, a series of interplanetary coronal mass ejections (ICMEs) in the period 7–17 March 2012 caused geomagnetic storms that strongly affected high-latitude ionosphere in the Northern and Southern Hemisphere. GPS phase scintillation was observed at northern and southern high latitudes by arrays of GPS ionospheric scintillation and TEC monitors (GISTMs) and geodetic-quality GPS receivers sampling at 1 Hz. Mapped as a function of magnetic latitude and magnetic local time, regions of enhanced scintillation are identified in the context of coupling processes between the solar wind and the magnetosphere–ionosphere system. Large southward IMF and …