Open Access. Powered by Scholars. Published by Universities.®

Instrumentation Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Instrumentation

Calculating Time Lags From Unevenly Sampled Light Curves, A. Zoghbi, C. Reynolds, E. M. Cackett Nov 2013

Calculating Time Lags From Unevenly Sampled Light Curves, A. Zoghbi, C. Reynolds, E. M. Cackett

Physics and Astronomy Faculty Research Publications

Timing techniques are powerful tools to study dynamical astrophysical phenomena. In the X-ray band, they offer the potential of probing accretion physics down to the event horizon. Recent work has used frequency- and energy-dependent time lags as tools for studying relativistic reverberation around the black holes in several Seyfert galaxies. This was achieved due to the evenly sampled light curves obtained using XMM-Newton. Continuously sampled data are, however, not always available and standard Fourier techniques are not applicable. Here, building on the work of Miller et al., we discuss and use a maximum likelihood method to obtain frequency-dependent lags that …


Identifying A New Intermediate Polar Using Xmm-Newton And Integral, Matthew J. Middleton, Edward M. Cackett, Craig Shaw, Gavin Ramsay, Timothy P. Roberts, Peter J. Wheatley Jan 2012

Identifying A New Intermediate Polar Using Xmm-Newton And Integral, Matthew J. Middleton, Edward M. Cackett, Craig Shaw, Gavin Ramsay, Timothy P. Roberts, Peter J. Wheatley

Physics and Astronomy Faculty Research Publications

The bright X-ray source 2XMMi J180438.7-145647 is fortunate to have long baseline observations in INTEGRAL that complement observations taken by other missions. Optical spectroscopy of this object has suggested a distance of ˜7 kpc and an identification with a low-mass X-ray binary. We instead use the X-ray data from 0.3 to 40 keV to identify the source as a bright intermediate polar (IP) with an estimate for the white dwarf mass of ˜0.60 M. This identification is supported by the presence of an iron triplet, the component lines of which are some of the strongest seen in IPs, …


On Relativistic Disk Spectroscopy In Compact Objects With X-Ray Ccd Cameras, J. M. Miller, A. D'Aì, M. W. Bautz, S. Bhattacharyya, D. N. Burrows, E. M. Cackett, A. C. Fabian, M. J. Freyberg, F. Haberl, J. Kennea, M. A. Nowak, R. C. Reis, T. E. Strohmayer, M. Tsujimoto Dec 2010

On Relativistic Disk Spectroscopy In Compact Objects With X-Ray Ccd Cameras, J. M. Miller, A. D'Aì, M. W. Bautz, S. Bhattacharyya, D. N. Burrows, E. M. Cackett, A. C. Fabian, M. J. Freyberg, F. Haberl, J. Kennea, M. A. Nowak, R. C. Reis, T. E. Strohmayer, M. Tsujimoto

Physics and Astronomy Faculty Research Publications

X-ray charge-coupled devices (CCDs) are the workhorse detectors of modern X-ray astronomy. Typically covering the 0.3-10.0 keV energy range, CCDs are able to detect photoelectric absorption edges and K shell lines from most abundant metals. New CCDs also offer resolutions of 30-50 (E/ΔE), which is sufficient to detect lines in hot plasmas and to resolve many lines shaped by dynamical processes in accretion flows. The spectral capabilities of X-ray CCDs have been particularly important in detecting relativistic emission lines from the inner disks around accreting neutron stars and black holes. One drawback of X-ray CCDs is that spectra can be …