Open Access. Powered by Scholars. Published by Universities.®

Instrumentation Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Instrumentation

On The Mobility Of Small Aperture Telescopes For Initial Orbit Determination And Apparent Magnitude Derivation Of Low Earth Satellites, Jonathan Ian Hernandez Dec 2021

On The Mobility Of Small Aperture Telescopes For Initial Orbit Determination And Apparent Magnitude Derivation Of Low Earth Satellites, Jonathan Ian Hernandez

Master's Theses

Maintaining Space Domain Awareness (SDA) of satellites in low Earth orbit (LEO) requires effective methods of tracking and characterization. Optical measurements of these objects are generally sparse due to limited access intervals and high angular rates. Light pollution and geographic obstructions may also preclude consistent observations. However, a mobile small aperture telescope grants the ability to minimize such environmental effects, thereby increasing capture likelihoods for objects within this regime. By enhancing LEO satellite visibility in this way, extensive orbital and visual data are obtainable.

An 8-inch Meade LX200GPS telescope equipped with a Lumenera SKYnyx2-0M CCD camera comprises the system that …


Investigation On The Use Of Small Aperture Telescopes For Leo Satellite Orbit Determination, Luis R. Curiel Iii Dec 2020

Investigation On The Use Of Small Aperture Telescopes For Leo Satellite Orbit Determination, Luis R. Curiel Iii

Master's Theses

The following thesis regards the use of small aperture telescopes for space domain awareness efforts. The rapidly populating space domain was motivation for the development of a new operation scheme to conduct space domain awareness feasibility studies using small telescopes. Two 14-inch Schmidt-Cassegrain Telescopes at the California Polytechnic State University and the Air Force Research Lab in Kirtland AFB, NM, in conjunction with a dedicated CCD camera and a commercial DSLR camera, were utilized to conduct optical observations on satellites in Earth orbit.

Satellites were imaged during August 2019, and from January 2020 to March 2020, resulting in the collection …


Anticoincidence Detector Performance Analysis, Christopher Helmerich, Erik Korzon Oct 2018

Anticoincidence Detector Performance Analysis, Christopher Helmerich, Erik Korzon

Von Braun Symposium Student Posters

No abstract provided.


Mission Overview For A Cislunar Gamma-Ray Burst Detector, Chandler Ellis, Jared Fuchs Oct 2018

Mission Overview For A Cislunar Gamma-Ray Burst Detector, Chandler Ellis, Jared Fuchs

Von Braun Symposium Student Posters

No abstract provided.


Radiation Detection At Ultra-High Altitudes, Samantha Johnson, Christopher Helmerich Oct 2018

Radiation Detection At Ultra-High Altitudes, Samantha Johnson, Christopher Helmerich

Von Braun Symposium Student Posters

No abstract provided.


High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen Aug 2018

High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen

Electronic Theses and Dissertations

Much of what we know about fundamental physical law and the universe derives from observations and measurements using optical methods. The passive use of the electromagnetic spectrum can be the best way of studying physical phenomenon in general with minimal disturbance of the system in the process. While for many applications ambient visible light is sufficient, light outside of the visible range may convey more information. The signals of interest are also often a small fraction of the background, and their changes occur on time scales so quickly that they are visually imperceptible. This thesis reports techniques and technologies developed …


Alternative Mission Concepts For The Exploration Of Outer Planets Using Small Satellite Swarms, Andrew Gene Blocher Nov 2017

Alternative Mission Concepts For The Exploration Of Outer Planets Using Small Satellite Swarms, Andrew Gene Blocher

Master's Theses

Interplanetary space exploration has thus far consisted of single, expensive spacecraft missions. Mission costs are particularly high on missions to the outer planets and while invaluable, finite budgets limit our ability to perform extensive and frequent investigations of the planets. Planetary systems such as Jupiter and Saturn provide extremely complex exploration environments with numerous targets of interest. Exploring these targets in addition to the main planet requires multiple fly-bys and long mission timelines. In LEO, CubeSats have changed the exploration paradigm, offering a fast and low cost alternative to traditional space vehicles. This new mission development philosophy has the potential …


Autonomous Solid-State Radiation Detector For Safety Of Aerospace Systems, Levi Davies, Biswajit Ray Oct 2017

Autonomous Solid-State Radiation Detector For Safety Of Aerospace Systems, Levi Davies, Biswajit Ray

Von Braun Symposium Student Posters

No abstract provided.


The Capabilities Of The Geostationary Operational Environmental Satellite-16 (Goes-16), Brandon M. Kane Oct 2017

The Capabilities Of The Geostationary Operational Environmental Satellite-16 (Goes-16), Brandon M. Kane

Student Works

This report investigates the capability of the new Geostationary Operational Environmental Satellite-16 (GOES-16) satellite to display 16 channels of the electromagnetic spectrum, to produce images at a higher resolution at increased intervals, and to detect and display lightning. This report also discusses the main instrumentation aboard the new geostationary satellite and how it aids in creating accurate data collection, which in turn, produces quicker weather forecasts and warnings. The 16 different channels produced by the Advanced Baseline Imager aboard the new satellite are analyzed in detail as to the functions and wavelengths on which the channels operate. The image resolution …


Designing An Anti-Coincidence Shielding System For The Alfred Project, Active Luminescence For X-Ray Emission Detection (Alfred) Team, Francis Wessling Oct 2016

Designing An Anti-Coincidence Shielding System For The Alfred Project, Active Luminescence For X-Ray Emission Detection (Alfred) Team, Francis Wessling

Von Braun Symposium Student Posters

No abstract provided.


Directional Camera Control On High Altitude Balloons, Matthew M. Plewa, Brent Scharlau Jun 2015

Directional Camera Control On High Altitude Balloons, Matthew M. Plewa, Brent Scharlau

2017 Academic High Altitude Conference

The research reported in this paper examined the design and control of a gimbal for solar eclipse tracking and video recording. The gimbal design required 3 axes of rotation to allow for full range of motion. Utilizing individual brushless motors for each of the axes ensure minimum rotational requirements on each axes. In controlling the gimbal, both a mathematical and visual method were utilized. The mathematical method is a modified version of what is currently used for solar array pointing. The visual method looks at where the position of the sun is within the image and determines what angle changes …


Estimation Of Crop Gross Primary Production (Gpp): FaparChl Versus Mod15a2 Fpar, Qingyuan Zhang, Yen-Ben Cheng, A. I. Lyapustin, Yujie Wang, Feng Gao, Andrew E. Suyker, Shashi B. Verma, Elizabeth M. Middleton Jan 2014

Estimation Of Crop Gross Primary Production (Gpp): FaparChl Versus Mod15a2 Fpar, Qingyuan Zhang, Yen-Ben Cheng, A. I. Lyapustin, Yujie Wang, Feng Gao, Andrew E. Suyker, Shashi B. Verma, Elizabeth M. Middleton

School of Natural Resources: Faculty Publications

Photosynthesis (PSN) is a pigment level process in which antenna pigments (predominately chlorophylls) in chloroplasts absorb photosynthetically active radiation (PAR) for the photochemical process. PAR absorbed by foliar non-photosynthetic components is not used for PSN. The fraction of PAR absorbed (fAPAR) by a canopy/vegetation (i.e., fAPARcanopy) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) images, referred to as MOD15A2 FPAR, has been used to compute absorbed PAR (APAR) for PSN (APARPSN) which is utilized to produce the standard MODIS gross primary production (GPP) product, referred to as MOD17A2 GPP. In this study, the fraction of PAR …


Telescope Assembly Alignment Simulator Performance Optimization, Joshua G. Thompson, Brian Eney, Zaheer Ali, Bob Thompson Aug 2012

Telescope Assembly Alignment Simulator Performance Optimization, Joshua G. Thompson, Brian Eney, Zaheer Ali, Bob Thompson

STAR Program Research Presentations

The Telescope Assembly Alignment Simulator (TAAS) calibrates scientific instruments (SI’s) that are installed on the Stratospheric Observatory For Infrared Astronomy (SOFIA). An SI’s accuracy is directly dependent on the consistent performance of the TAAS, which has never been fully characterized. After designing various thermal and optical experiments to identify the current unknowns of TAAS, we now have a far better grasp on how the equipment behaves.