Open Access. Powered by Scholars. Published by Universities.®

2020

Partial Differential Equations

Institution
Keyword
Publication
Publication Type

Articles 1 - 18 of 18

Full-Text Articles in Numerical Analysis and Computation

The Revised Nim For Solving The Non-Linear System Variant Boussinesq Equations And Comparison With Nim, Oday Ahmed Jasim Dec 2020

The Revised Nim For Solving The Non-Linear System Variant Boussinesq Equations And Comparison With Nim, Oday Ahmed Jasim

Karbala International Journal of Modern Science

This research aims to guide researchers to use a new method, and it is the Revised New Iterative Method (RNIM) to solve partial differential equation systems and apply them to solve problems in various disciplines such as chemistry, physics, engineering and medicine. In this paper, the numerical solutions of the nonlinear Variable Boussinesq Equation System (VBE) were obtained using a new modified iterative method (RNIM); this was planned by (Bhaleker and Datterder-Gejj). A numerical solution to the Variable Boussinesq Equation System (VBE) was also found using a widely known method, a new iterative method (NIM). By comparing the numerical solutions …


Accurate Spectral Algorithms For Solving Variable-Order Fractional Percolation Equations, M. A. Abdelkawy Dec 2020

Accurate Spectral Algorithms For Solving Variable-Order Fractional Percolation Equations, M. A. Abdelkawy

Applications and Applied Mathematics: An International Journal (AAM)

A high accurate spectral algorithm for one-dimensional variable-order fractional percolation equations (VO-FPEs) is considered.We propose a shifted Legendre Gauss-Lobatto collocation (SL-GLC) method in conjunction with shifted Chebyshev Gauss-Radau collocation (SC-GR-C) method to solve the proposed problem. Firstly, the solution and its space fractional derivatives are expanded as shifted Legendre polynomials series. Then, we determine the expansion coefficients by reducing the VO-FPEs and its conditions to a system of ordinary differential equations (SODEs) in time. The numerical approximation of SODEs is achieved by means of the SC-GR-C method. The under-study’s problem subjected to the Dirichlet or non-local boundary conditions is presented …


Diagonalization Of 1-D Schrodinger Operators With Piecewise Constant Potentials, Sarah Wright Dec 2020

Diagonalization Of 1-D Schrodinger Operators With Piecewise Constant Potentials, Sarah Wright

Master's Theses

In today's world our lives are very layered. My research is meant to adapt current inefficient numerical methods to more accurately model the complex situations we encounter. This project focuses on a specific equation that is used to model sound speed in the ocean. As depth increases, the sound speed changes. This means the variable related to the sound speed is not constant. We will modify this variable so that it is piecewise constant. The specific operator in this equation also makes current time-stepping methods not practical. The method used here will apply an eigenfunction expansion technique used in previous …


Asymptotic Analysis Of Radial Point Rupture Solutions For Elliptic Equations, Attou Miloua Nov 2020

Asymptotic Analysis Of Radial Point Rupture Solutions For Elliptic Equations, Attou Miloua

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Deep Learning With Physics Informed Neural Networks For The Airborne Spread Of Covid-19 In Enclosed Spaces, Udbhav Muthakana, Padmanabhan Seshaiyer, Maziar Raissi, Long Nguyen Nov 2020

Deep Learning With Physics Informed Neural Networks For The Airborne Spread Of Covid-19 In Enclosed Spaces, Udbhav Muthakana, Padmanabhan Seshaiyer, Maziar Raissi, Long Nguyen

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Numerical Simulations Of Nonlinear Waves And Their Stability: Stokes Waves And Nonlinear Schroedinger Equation, Anastassiya Semenova Nov 2020

Numerical Simulations Of Nonlinear Waves And Their Stability: Stokes Waves And Nonlinear Schroedinger Equation, Anastassiya Semenova

Mathematics & Statistics ETDs

The present work offers an investigation of dynamics and stability of nonlinear waves in Hamiltonian systems. The first part of the manuscript discusses the classical problem of water waves on the surface of an ideal fluid in 2D. We demonstrate how to construct the Stokes waves, and how to apply a continuation method to find waves in close vicinity to the limiting Stokes wave. We provide new insight into the stability of the Stokes waves by identifying previously inaccessible branches of instability in the equations of motion for the fluid. We provide numerical evidence that pairs of unstable eigenvalues of …


From Wave Propagation To Spin Dynamics: Mathematical And Computational Aspects, Oleksii Beznosov Nov 2020

From Wave Propagation To Spin Dynamics: Mathematical And Computational Aspects, Oleksii Beznosov

Mathematics & Statistics ETDs

In this work we concentrate on two separate topics which pose certain numerical challenges. The first topic is the spin dynamics of electrons in high-energy circular accelerators. We introduce a stochastic differential equation framework to study spin depolarization and spin equilibrium. This framework allows the mathematical study of known equations and new equations modelling the spin distribution of an electron bunch. A spin distribution is governed by a so-called Bloch equation, which is a linear Fokker-Planck type PDE, in general posed in six dimensions. We propose three approaches to approximate solutions, using analytical and modern numerical techniques. We also present …


A Phase-Field Approach To Diffusion-Driven Fracture, Friedrich Wilhelm Alexander Dunkel Oct 2020

A Phase-Field Approach To Diffusion-Driven Fracture, Friedrich Wilhelm Alexander Dunkel

LSU Doctoral Dissertations

In recent years applied mathematicians have used modern analysis to develop variational phase-field models of fracture based on Griffith's theory. These variational phase-field models of fracture have gained popularity due to their ability to predict the crack path and handle crack nucleation and branching.

In this work, we are interested in coupled problems where a diffusion process drives the crack propagation. We extend the variational phase-field model of fracture to account for diffusion-driving fracture and study the convergence of minimizers using gamma-convergence. We will introduce Newton's method for the constrained optimization problem and present an algorithm to solve the diffusion-driven …


Numerical Approach To Non-Darcy Mixed Convective Flow Of Non-Newtonian Fluid On A Vertical Surface With Varying Surface Temperature And Heat Source, Ajaya Prasad Baitharu, Sachidananda Sahoo, Gauranga Charan Dash Oct 2020

Numerical Approach To Non-Darcy Mixed Convective Flow Of Non-Newtonian Fluid On A Vertical Surface With Varying Surface Temperature And Heat Source, Ajaya Prasad Baitharu, Sachidananda Sahoo, Gauranga Charan Dash

Karbala International Journal of Modern Science

An analysis is performed on non-Darcy mixed convective flow of non-Newtonian fluid past a vertical surface in the presence of volumetric heat source originated by some electromechanical or other devices. Further, the vertical bounding surface is subjected to power law variation of wall temperature, but the numerical solution is obtained for isothermal case. In the present non-Darcy flow model, effects of high flow rate give rise to inertia force. The inertia force in conjunction with volumetric heat source/sink is considered in the present analysis. The Runge-Kutta method of fourth order with shooting technique has been applied to obtain the numerical …


Heat And Mass Transfer Of Mhd Casson Nanofluid Flow Through A Porous Medium Past A Stretching Sheet With Newtonian Heating And Chemical Reaction, Lipika Panigrahi, Jayaprakash Panda, Kharabela Swain, Gouranga Charan Dash Oct 2020

Heat And Mass Transfer Of Mhd Casson Nanofluid Flow Through A Porous Medium Past A Stretching Sheet With Newtonian Heating And Chemical Reaction, Lipika Panigrahi, Jayaprakash Panda, Kharabela Swain, Gouranga Charan Dash

Karbala International Journal of Modern Science

An analysis is made to investigate the effect of inclined magnetic field on Casson nanofluid over a stretching sheet embedded in a saturated porous matrix in presence of thermal radiation, non-uniform heat source/sink. The heat equation takes care of energy loss due to viscous dissipation and Joulian dissipation. The mass transfer and heat equation become coupled due to thermophoresis and Brownian motion, two important characteristics of nanofluid flow. The convective terms of momentum, heat and mass transfer equations render the equations non-linear. This present flow model is pressure gradient driven and it is eliminated with the help of potential/ambient flow …


Advection-Reaction-Diffusion Model Of Drug Concentration In A Lymph Node, Ting Yan Aug 2020

Advection-Reaction-Diffusion Model Of Drug Concentration In A Lymph Node, Ting Yan

Mathematics Theses and Dissertations

It is recognized that there exist reservoirs of HIV located outside the bloodstream, and that these reservoirs hinder the efficacy of antiretroviral medication regimens in combating the virus. The prevailing theories regarding these reservoirs point to the lymphatic system. In this work, we discuss a novel computational model of viral dynamics in the lymph node, to allow numerical studies of viral “reservoirs” causing reinfection. Our model consists of a system of advection-reaction-diffusion partial differential equations (PDEs), where the diffusion coefficients vary between species (virus, drugs, lymphocytes) and include discontinuous jumps to capture differing properties of internal lymph node structures. We …


Variable Compact Multi-Point Upscaling Schemes For Anisotropic Diffusion Problems In Three-Dimensions, James Quinlan Aug 2020

Variable Compact Multi-Point Upscaling Schemes For Anisotropic Diffusion Problems In Three-Dimensions, James Quinlan

Dissertations

Simulation is a useful tool to mitigate risk and uncertainty in subsurface flow models that contain geometrically complex features and in which the permeability field is highly heterogeneous. However, due to the level of detail in the underlying geocellular description, an upscaling procedure is needed to generate a coarsened model that is computationally feasible to perform simulations. These procedures require additional attention when coefficients in the system exhibit full-tensor anisotropy due to heterogeneity or not aligned with the computational grid. In this thesis, we generalize a multi-point finite volume scheme in several ways and benchmark it against the industry-standard routines. …


Dynamics Of Discontinuities In Elastic Solids, Arkadi Berezovski, Mihhail Berezovski Jul 2020

Dynamics Of Discontinuities In Elastic Solids, Arkadi Berezovski, Mihhail Berezovski

Publications

The paper is devoted to evolving discontinuities in elastic solids. A discontinuity is represented as a singular set of material points. Evolution of a discontinuity is driven by the configurational force acting at such a set. The main attention is paid to the determination of the velocity of a propagating discontinuity. Martensitic phase transition fronts and brittle cracks are considered as representative examples.


A New Class Of Discontinuous Galerkin Methods For Wave Equations In Second-Order Form, Lu Zhang May 2020

A New Class Of Discontinuous Galerkin Methods For Wave Equations In Second-Order Form, Lu Zhang

Mathematics Theses and Dissertations

Discontinuous Galerkin methods are widely used in many practical fields. In this thesis, we focus on a new class of discontinuous Galerkin methods for second-order wave equations. This thesis is constructed by three main parts. In the first part, we study the convergence properties of the energy-based discontinuous Galerkin proposed in [3] for wave equations. We improve the existing suboptimal error estimates to an optimal convergence rate in the energy norm. In the second part, we generalize the energy-based discontinuous Galerkin method proposed in [3] to the advective wave equation and semilinear wave equation in second-order form. Energy-conserving or energy-dissipating …


Teaching And Learning Of Fluid Mechanics, Ashwin Vaidya Apr 2020

Teaching And Learning Of Fluid Mechanics, Ashwin Vaidya

Department of Mathematics Facuty Scholarship and Creative Works

Fluid mechanics occupies a privileged position in the sciences; it is taught in various science departments including physics, mathematics, environmental sciences and mechanical, chemical and civil engineering, with each highlighting a different aspect or interpretation of the foundation and applications of fluids. Doll’s fluid analogy [5] for this idea is especially relevant to this issue: “Emergence of creativity from complex flow of knowledge—example of Benard convection pattern as an analogy—dissipation or dispersal of knowledge (complex knowledge) results in emergent structures, i.e., creativity which in the context of education should be thought of as a unique way to arrange information so …


Numerical Analysis Of Three-Dimensional Mhd Flow Of Casson Nanofluid Past An Exponentially Stretching Sheet, Madhusudan Senapati, Kharabela Swain, Sampad Kumar Parida Mar 2020

Numerical Analysis Of Three-Dimensional Mhd Flow Of Casson Nanofluid Past An Exponentially Stretching Sheet, Madhusudan Senapati, Kharabela Swain, Sampad Kumar Parida

Karbala International Journal of Modern Science

The convective three dimensional electrically conducting Casson nanofluid flow over an exponentially stretching sheet embedded in a saturated porous medium and subjected to thermal as well as solutal slip in the presence of externally applied transverse magnetic field (force-at-a-distance) is studied. The heat transfer phenomenon includes the viscous dissipation, Joulian dissipation, thermal radiation, contribution of nanofluidity and temperature dependent volumetric heat source. The study of mass diffusion in the presence of chemically reactive species enriches the analysis. The numerical solutions of coupled nonlinear governing equations bring some earlier reported results as particular cases providing a testimony of validation of the …


Investigating The Solution Properties Of Population Model Of Cross-Diffusion Model With Double Nonlinearity And With Variable Density, Dildora Kabilovna Muhamediyeva Feb 2020

Investigating The Solution Properties Of Population Model Of Cross-Diffusion Model With Double Nonlinearity And With Variable Density, Dildora Kabilovna Muhamediyeva

Chemical Technology, Control and Management

The models of two competing populations with double nonlinear diffusion and three types of functional dependencies are considered. The first dependence corresponds to the Malthusian type, the second to the Verhühlst type (logistic population), and the third to Olli-type populations. A common element of this kind of description is the presence of a linear source. Nonlinear sinks are also present in descriptions of populations of the Verhulst and Ollie type. Suitable initial approximations for a rapidly converging iterative process are proposed. Based on a self-similar analysis and comparison of the solutions of the Cauchy problem in the domain for an …


Higher Accuracy Methods For Fluid Flows In Various Applications: Theory And Implementation, Dilek Erkmen Jan 2020

Higher Accuracy Methods For Fluid Flows In Various Applications: Theory And Implementation, Dilek Erkmen

Dissertations, Master's Theses and Master's Reports

This dissertation contains research on several topics related to Defect-deferred correction (DDC) method applying to CFD problems. First, we want to improve the error due to temporal discretization for the problem of two convection dominated convection-diffusion problems, coupled across a joint interface. This serves as a step towards investigating an atmosphere-ocean coupling problem with the interface condition that allows for the exchange of energies between the domains.

The main diffuculty is to decouple the problem in an unconditionally stable way for using legacy code for subdomains. To overcome the issue, we apply the Deferred Correction (DC) method. The DC method …