Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Numerical Analysis and Computation

Numerical Methods And Algorithms For High Frequency Wave Scattering Problems In Homogeneous And Random Media, Cody Samuel Lorton Aug 2014

Numerical Methods And Algorithms For High Frequency Wave Scattering Problems In Homogeneous And Random Media, Cody Samuel Lorton

Doctoral Dissertations

This dissertation consists of four integral parts with a unified objective of developing efficient numerical methods for high frequency time-harmonic wave equations defined on both homogeneous and random media. The first part investigates the generalized weak coercivity of the acoustic Helmholtz, elastic Helmholtz, and time-harmonic Maxwell wave operators. We prove that such a weak coercivity holds for these wave operators on a class of more general domains called generalized star-shape domains. As a by-product, solution estimates for the corresponding Helmholtz-type problems are obtained.

The second part of the dissertation develops an absolutely stable (i.e. stable in all mesh regimes) interior …


Analysis Of A Partial Differential Equation Model Of Surface Electromigration, Selahittin Cinar May 2014

Analysis Of A Partial Differential Equation Model Of Surface Electromigration, Selahittin Cinar

Masters Theses & Specialist Projects

A Partial Differential Equation (PDE) based model combining surface electromigration and wetting is developed for the analysis of the morphological instability of mono-crystalline metal films in a high temperature environment typical to operational conditions of microelectronic interconnects. The atomic mobility and surface energy of such films are anisotropic, and the model accounts for these material properties. The goal of modeling is to describe and understand the time-evolution of the shape of film surface. I will present the formulation of a nonlinear parabolic PDE problem for the height function h(x,t) of the film in the horizontal …


A Posteriori Error Estimates For Surface Finite Element Methods, Fernando F. Camacho Jan 2014

A Posteriori Error Estimates For Surface Finite Element Methods, Fernando F. Camacho

Theses and Dissertations--Mathematics

Problems involving the solution of partial differential equations over surfaces appear in many engineering and scientific applications. Some of those applications include crystal growth, fluid mechanics and computer graphics. Many times analytic solutions to such problems are not available. Numerical algorithms, such as Finite Element Methods, are used in practice to find approximate solutions in those cases.

In this work we present L2 and pointwise a posteriori error estimates for Adaptive Surface Finite Elements solving the Laplace-Beltrami equation −△Γ u = f . The two sources of errors for Surface Finite Elements are a Galerkin error, and a …