Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Numerical Analysis and Computation

A Component-Wise Approach To Smooth Extension Embedding Methods, Vivian Montiforte May 2021

A Component-Wise Approach To Smooth Extension Embedding Methods, Vivian Montiforte

Dissertations

Krylov Subspace Spectral (KSS) Methods have demonstrated to be highly scalable methods for PDEs. However, a current limitation of these methods is the requirement of a rectangular or box-shaped domain. Smooth Extension Embedding Methods (SEEM) use fictitious domain methods to extend a general domain to a simple, rectangular or box-shaped domain. This dissertation describes how these methods can be combined to extend the applicability of KSS methods, while also providing a component-wise approach for solving the systems of equations produced with SEEM.


Solutions Of The Generalized Abel’S Integral Equation Using Laguerre Orthogonal Approximation, N. Singha, C. Nahak Dec 2019

Solutions Of The Generalized Abel’S Integral Equation Using Laguerre Orthogonal Approximation, N. Singha, C. Nahak

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, a numerical approximation is drafted for solving the generalized Abel’s integral equation by practicing Laguerre orthogonal polynomials. The proposed approximation is framed for the first and second kinds of the generalized Abel’s integral equation. We have utilized the properties of fractional order operators to interpret Abel’s integral equation as a fractional integral equation. It offers a new approach by employing Laguerre polynomials to approximate the integrand of a fractional integral equation. Given examples demonstrate the simplicity and suitability of the method. The graphical representation of exact and approximate solutions helps in visualizing a solution at discrete points, …


Numerical Experiments For Finding Roots Of The Polynomials In Chebyshev Basis, M. S. Solary Dec 2017

Numerical Experiments For Finding Roots Of The Polynomials In Chebyshev Basis, M. S. Solary

Applications and Applied Mathematics: An International Journal (AAM)

Root finding for a function or a polynomial that is smooth on the interval [a; b], but otherwise arbitrary, is done by the following procedure. First, approximate it by a Chebyshev polynomial series. Second, find the zeros of the truncated Chebyshev series. Finding roots of the Chebyshev polynomial is done by eigenvalues of a nXn matrix such as companion or comrade matrices. There are some methods for finding eigenvalues of these matrices such as companion matrix and chasing procedures.We derive another algorithm by second kind of Chebyshev polynomials.We computed the numerical results of these methods for some special and ill-conditioned …