Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Numerical Analysis and Computation

Gauss-Seidel Estimation Of Generalized Linear Mixed Models With Application To Poisson Modeling Of Spatially Varying Disease Rates, Subharup Guha, Louise Ryan Oct 2005

Gauss-Seidel Estimation Of Generalized Linear Mixed Models With Application To Poisson Modeling Of Spatially Varying Disease Rates, Subharup Guha, Louise Ryan

Harvard University Biostatistics Working Paper Series

Generalized linear mixed models (GLMMs) provide an elegant framework for the analysis of correlated data. Due to the non-closed form of the likelihood, GLMMs are often fit by computational procedures like penalized quasi-likelihood (PQL). Special cases of these models are generalized linear models (GLMs), which are often fit using algorithms like iterative weighted least squares (IWLS). High computational costs and memory space constraints often make it difficult to apply these iterative procedures to data sets with very large number of cases.

This paper proposes a computationally efficient strategy based on the Gauss-Seidel algorithm that iteratively fits sub-models of the GLMM …


Computational Techniques For Spatial Logistic Regression With Large Datasets, Christopher J. Paciorek, Louise Ryan Oct 2005

Computational Techniques For Spatial Logistic Regression With Large Datasets, Christopher J. Paciorek, Louise Ryan

Harvard University Biostatistics Working Paper Series

In epidemiological work, outcomes are frequently non-normal, sample sizes may be large, and effects are often small. To relate health outcomes to geographic risk factors, fast and powerful methods for fitting spatial models, particularly for non-normal data, are required. We focus on binary outcomes, with the risk surface a smooth function of space. We compare penalized likelihood models, including the penalized quasi-likelihood (PQL) approach, and Bayesian models based on fit, speed, and ease of implementation.

A Bayesian model using a spectral basis representation of the spatial surface provides the best tradeoff of sensitivity and specificity in simulations, detecting real spatial …


Remarks On Risk-Sensitive Control Problems, José Luis Menaldi, Maurice Robin Oct 2005

Remarks On Risk-Sensitive Control Problems, José Luis Menaldi, Maurice Robin

Mathematics Faculty Research Publications

The main purpose of this paper is to investigate the asymptotic behavior of the discounted risk-sensitive control problem for periodic diffusion processes when the discount factor α goes to zero. If uα(θ, x) denotes the optimal cost function, being the risk factor, then it is shown that limα→0αuα(θ, x) = ξ(θ) where ξ(θ) is the average on ]0, θ[ of the optimal cost of the (usual) in nite horizon risk-sensitive control problem.


The Interquartile Range: Theory And Estimation., Dewey Lonzo Whaley Aug 2005

The Interquartile Range: Theory And Estimation., Dewey Lonzo Whaley

Electronic Theses and Dissertations

The interquartile range (IQR) is used to describe the spread of a distribution. In an introductory statistics course, the IQR might be introduced as simply the “range within which the middle half of the data points lie.” In other words, it is the distance between the two quartiles, IQR = Q3 - Q1. We will compute the population IQR, the expected value, and the variance of the sample IQR for various continuous distributions. In addition, a bootstrap confidence interval for the population IQR will be evaluated.


Cluster Analysis Of Genomic Data With Applications In R, Katherine S. Pollard, Mark J. Van Der Laan Jan 2005

Cluster Analysis Of Genomic Data With Applications In R, Katherine S. Pollard, Mark J. Van Der Laan

U.C. Berkeley Division of Biostatistics Working Paper Series

In this paper, we provide an overview of existing partitioning and hierarchical clustering algorithms in R. We discuss statistical issues and methods in choosing the number of clusters, the choice of clustering algorithm, and the choice of dissimilarity matrix. In particular, we illustrate how the bootstrap can be employed as a statistical method in cluster analysis to establish the reproducibility of the clusters and the overall variability of the followed procedure. We also show how to visualize a clustering result by plotting ordered dissimilarity matrices in R. We present a new R package, hopach, which implements the hybrid clustering method, …


Multiple Testing Procedures And Applications To Genomics, Merrill D. Birkner, Katherine S. Pollard, Mark J. Van Der Laan, Sandrine Dudoit Jan 2005

Multiple Testing Procedures And Applications To Genomics, Merrill D. Birkner, Katherine S. Pollard, Mark J. Van Der Laan, Sandrine Dudoit

U.C. Berkeley Division of Biostatistics Working Paper Series

This chapter proposes widely applicable resampling-based single-step and stepwise multiple testing procedures (MTP) for controlling a broad class of Type I error rates, in testing problems involving general data generating distributions (with arbitrary dependence structures among variables), null hypotheses, and test statistics (Dudoit and van der Laan, 2005; Dudoit et al., 2004a,b; van der Laan et al., 2004a,b; Pollard and van der Laan, 2004; Pollard et al., 2005). Procedures are provided to control Type I error rates defined as tail probabilities for arbitrary functions of the numbers of Type I errors, V_n, and rejected hypotheses, R_n. These error rates include: …


Robust Inferences For Covariate Effects On Survival Time With Censored Linear Regression Models, Larry Leon, Tianxi Cai, L. J. Wei Jan 2005

Robust Inferences For Covariate Effects On Survival Time With Censored Linear Regression Models, Larry Leon, Tianxi Cai, L. J. Wei

Harvard University Biostatistics Working Paper Series

Various inference procedures for linear regression models with censored failure times have been studied extensively. Recent developments on efficient algorithms to implement these procedures enhance the practical usage of such models in survival analysis. In this article, we present robust inferences for certain covariate effects on the failure time in the presence of "nuisance" confounders under a semiparametric, partial linear regression setting. Specifically, the estimation procedures for the regression coefficients of interest are derived from a working linear model and are valid even when the function of the confounders in the model is not correctly specified. The new proposals are …


Penalty Approximation And Analytical Characterization Of The Problem Of Super-Replication Under Portfolio Constraints, Alain Bensoussan, Nizar Touzi, José Luis Menaldi Jan 2005

Penalty Approximation And Analytical Characterization Of The Problem Of Super-Replication Under Portfolio Constraints, Alain Bensoussan, Nizar Touzi, José Luis Menaldi

Mathematics Faculty Research Publications

In this paper, we consider the problem of super-replication under portfolio constraints in a Markov framework. More specifically, we assume that the portfolio is restricted to lie in a convex subset, and we show that the super-replication value is the smallest function which lies above the Black-Scholes price function and which is stable for the so-called face lifting operator. A natural approach to this problem is the penalty approximation, which not only provides a constructive smooth approximation, but also a way to proceed analytically.