Open Access. Powered by Scholars. Published by Universities.®

Partial Differential Equations

Journal

Stability

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Numerical Analysis and Computation

Finite Difference Schemes For Variable Order Time-Fractional First Initial Boundary Value Problems, Gunvant A. Birajdar, M. M. Rashidi Jun 2017

Finite Difference Schemes For Variable Order Time-Fractional First Initial Boundary Value Problems, Gunvant A. Birajdar, M. M. Rashidi

Applications and Applied Mathematics: An International Journal (AAM)

The aim of the study is to obtain the numerical solution of first initial boundary value problem (IBVP) for semi-linear variable order fractional diffusion equation by using different finite difference schemes. We developed the three finite difference schemes namely explicit difference scheme, implicit difference scheme and Crank-Nicolson difference scheme, respectively for variable order type semi-linear diffusion equation. For this scheme the stability as well as convergence are studied via Fourier method. At the end, solution of some numerical examples are discussed and represented graphically using Matlab.


A Duhamel Integral Based Approach To Identify An Unknown Radiation Term In A Heat Equation With Non-Linear Boundary Condition, R. Pourgholi, M. Abtahi, A. Saeedi Jun 2012

A Duhamel Integral Based Approach To Identify An Unknown Radiation Term In A Heat Equation With Non-Linear Boundary Condition, R. Pourgholi, M. Abtahi, A. Saeedi

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, we consider the determination of an unknown radiation term in the nonlinear boundary condition of a linear heat equation from an overspecified condition. First we study the existence and uniqueness of the solution via an auxiliary problem. Then a numerical method consisting of zeroth-, first-, and second-order Tikhonov regularization method to the matrix form of Duhamel's principle for solving the inverse heat conduction problem (IHCP) using temperature data containing significant noise is presented. The stability and accuracy of the scheme presented is evaluated by comparison with the Singular Value Decomposition (SVD) method. Some numerical experiments confirm the …