Open Access. Powered by Scholars. Published by Universities.®

Numerical Analysis and Scientific Computing

Southern Methodist University

Theses/Dissertations

2021

Articles 1 - 3 of 3

Full-Text Articles in Numerical Analysis and Computation

A Fast Method For Computing Volume Potentials In The Galerkin Boundary Element Method In 3d Geometries, Sasan Mohyaddin Aug 2021

A Fast Method For Computing Volume Potentials In The Galerkin Boundary Element Method In 3d Geometries, Sasan Mohyaddin

Mathematics Theses and Dissertations

We discuss how the Fast Multipole Method (FMM) applied to a boundary concentrated mesh can be used to evaluate volume potentials that arise in the boundary element method. If $h$ is the meshwidth near the boundary, then the algorithm can compute the potential in nearly $\Ord(h^{-2})$ operations while maintaining an $\Ord(h^p)$ convergence of the error. The effectiveness of the algorithms are demonstrated by solving boundary integral equations of the Poisson equation.


Fast Multipole Methods For Wave And Charge Source Interactions In Layered Media And Deep Neural Network Algorithms For High-Dimensional Pdes, Wenzhong Zhang Aug 2021

Fast Multipole Methods For Wave And Charge Source Interactions In Layered Media And Deep Neural Network Algorithms For High-Dimensional Pdes, Wenzhong Zhang

Mathematics Theses and Dissertations

In this dissertation, we develop fast algorithms for large scale numerical computations, including the fast multipole method (FMM) in layered media, and the forward-backward stochastic differential equation (FBSDE) based deep neural network (DNN) algorithms for high-dimensional parabolic partial differential equations (PDEs), addressing the issues of real-world challenging computational problems in various computation scenarios.

We develop the FMM in layered media, by first studying analytical and numerical properties of the Green's functions in layered media for the 2-D and 3-D Helmholtz equation, the linearized Poisson--Boltzmann equation, the Laplace's equation, and the tensor Green's functions for the time-harmonic Maxwell's equations and the …


High-Order Flexible Multirate Integrators For Multiphysics Applications, Rujeko Chinomona May 2021

High-Order Flexible Multirate Integrators For Multiphysics Applications, Rujeko Chinomona

Mathematics Theses and Dissertations

Traditionally, time integration methods within multiphysics simulations have been chosen to cater to the most restrictive dynamics, sometimes at a great computational cost. Multirate integrators accurately and efficiently solve systems of ordinary differential equations that exhibit different time scales using two or more time steps. In this thesis, we explore three classes of time integrators that can be classified as one-step multi-stage multirate methods for which the slow dynamics are evolved using a traditional one step scheme and the fast dynamics are solved through a sequence of modified initial value problems. Practically, the fast dynamics are subcycled using a small …