Open Access. Powered by Scholars. Published by Universities.®

Non-linear Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Non-linear Dynamics

Simulating The Electrical Properties Of Random Carbon Nanotube Networks Using A Simple Model Based On Percolation Theory, Roberto Abril Valenzuela Jun 2018

Simulating The Electrical Properties Of Random Carbon Nanotube Networks Using A Simple Model Based On Percolation Theory, Roberto Abril Valenzuela

Physics

Carbon nanotubes (CNTs) have been subject to extensive research towards their possible applications in the world of nanoelectronics. The interest in carbon nanotubes originates from their unique variety of properties useful in nanoelectronic devices. One key feature of carbon nanotubes is that the chiral angle at which they are rolled determines whether the tube is metallic or semiconducting. Of main interest to this project are devices containing a thin film of randomly arranged carbon nanotubes, known as carbon nanotube networks. The presence of semiconducting tubes in a CNT network can lead to a switching effect when the film is electro-statically …


Transition Orbits Of Walking Droplets, Joshua Parker Jun 2015

Transition Orbits Of Walking Droplets, Joshua Parker

Physics

It was recently discovered that millimeter-sized droplets bouncing on the surface of an oscillating bath of the same fluid can couple with the surface waves it produces and begin walking across the fluid bath. These walkers have been shown to behave similarly to quantum particles; a few examples include single-particle diffraction, tunneling, and quantized orbits. Such behavior occurs because the drop and surface waves depend on each other to exist, making this the first and only known macroscopic pilot-wave system. In this paper, the quantized orbits between two identical drops are explored. By sending a perturbation to a pair of …


Viscosity Dependence Of Faraday Wave Formation Thresholds, Lisa Michelle Slaughter Dec 2013

Viscosity Dependence Of Faraday Wave Formation Thresholds, Lisa Michelle Slaughter

Physics

This experiment uses an electromagnetic shaker to produce standing wave patterns on the surface of a vertically oscillating sample of silicon liquid. These surface waves, known as Faraday waves, form shapes such as squares, lines, and hexagons. They are known to be dependent upon the frequency and amplitude of the forcing as well as on the viscosity and depth of the liquid in the dish. At a depth of 4mm and for various silicon liquids having kinematic viscosities of 10, 20, and 38 cSt, we determined the acceleration at which patterns form for frequencies between 10 and 60 Hz. For …


Field Control Of The Surface Electroclinic Effect In Liquid Crystal Displays, Dana Hipolite Aug 2013

Field Control Of The Surface Electroclinic Effect In Liquid Crystal Displays, Dana Hipolite

Physics

Liquid crystals (LCs) are a fascinating class of materials exhibiting a range of phases intermediate between liquid and crystalline. Smectic LCs consist of elongated molecules arranged in a periodic stack (along z) of liquid like layers. In the smectic-A (Sm-A) phase, the average molecular long axis (director) points along z. In the smectic-C (Sm-C) phase, it is tilted relative to z, thus picking out a special direction within the layers. Typically, the Sm-A* to Sm- C* transition will occur as temperature is decreased. In chiral smectics (Sm-*A or Sm-C*) it is possible to induce director titling (i.e. the Sm-C* phase) …