Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Oxidation

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 213

Full-Text Articles in Physical Sciences and Mathematics

Potentially Massive And Global Non-Pyrogenic Production Of Condensed "Black" Carbon Through Biomass Oxidation, Aleksandar I. Goranov, Hongmei Chen, Jianshu Duan, Satish C. B. Myneni, Patrick G. Hatcher Jan 2024

Potentially Massive And Global Non-Pyrogenic Production Of Condensed "Black" Carbon Through Biomass Oxidation, Aleksandar I. Goranov, Hongmei Chen, Jianshu Duan, Satish C. B. Myneni, Patrick G. Hatcher

Chemistry & Biochemistry Faculty Publications

With the increased occurrences of wildfires worldwide, there has been an increase in scientific interest surrounding the chemistry of fire-derived "black" carbon (BC). Traditionally, wildfire research has assumed that condensed aromatic carbon (ConAC) is exclusively produced via combustion, and thus, ConAC is equated to BC. However, the lack of correlations between ConAC in soils or rivers and wildfire history suggests that ConAC may be produced non-pyrogenically. Here, we show quantitative evidence that this occurs during the oxidation of biomass with environmentally ubiquitous hydroxyl radicals. Pine wood boards exposed to iron nails and natural weather conditions for 12 years yielded a …


Mechanisms Of Formation Of Novel Guanine-Guanine Cross-Links As Major End Products During One-Electron Oxidation Of Guanine Derivatives, Evan Dunn May 2023

Mechanisms Of Formation Of Novel Guanine-Guanine Cross-Links As Major End Products During One-Electron Oxidation Of Guanine Derivatives, Evan Dunn

Undergraduate Honors Theses

Guanine (G), as the most oxidizable base in DNA, is the major focus of studies of oxidation damage to DNA. The present thesis reports the first detailed characterization of G dimerization products potentially resulting from recombination of neutral G• radicals. Previous research has discovered a novel type of products of G• dimerization, D1 and D2, formed from one-electron oxidation of G derivatives. However, the mechanism of this dimerization remains elusive. While there appears to be a tautomeric equilibrium between two forms of G•, G(N1-H)• or G(N2-H)•, it remains unclear which intermediate participates in the formation of …


Synthesis And Characterization Of Humic/Melanin-Like Compounds By Oxidative Polymerization Of Simple Aromatic Precursors, Nastaran Khademimoshgenani, Sarah A. Green Apr 2023

Synthesis And Characterization Of Humic/Melanin-Like Compounds By Oxidative Polymerization Of Simple Aromatic Precursors, Nastaran Khademimoshgenani, Sarah A. Green

Michigan Tech Publications

Dissolved organic matter (DOM) is a complex mixture of naturally occurring organic molecules originating from multiple marine and terrestrial sources. DOM plays a significant role in water quality by affecting the photochemistry, trace metal transport, and acidity in aquatic systems. Understanding the chemical composition of DOM helps interpret the links between its optical properties and molecular structures. Currently, the molecular origins of the optical properties of DOM are not well-defined. In this study, we oxidize and initiate the polymerization of melanin precursors 1,8-dihydroxy naphthalene and 5,6-dihydroxy indole by the addition of hydrogen peroxide and/or with ultraviolet irradiation. Our goal is …


Nitrite Cycling In The Primary Nitrite Maxima Of The Eastern Tropical North Pacific, Nicole M. Travis, Colette L. Kelly, Margaret R. Mulholland, Karen L. Casciotti Jan 2023

Nitrite Cycling In The Primary Nitrite Maxima Of The Eastern Tropical North Pacific, Nicole M. Travis, Colette L. Kelly, Margaret R. Mulholland, Karen L. Casciotti

OES Faculty Publications

The primary nitrite maximum (PNM) is a ubiquitous feature of the upper ocean, where nitrite accumulates in a sharp peak at the base of the euphotic zone. This feature is situated where many chemical and hydrographic properties have strong gradients and the activities of several microbial processes overlap. Near the PNM, four major microbial processes are active in nitrite cycling: ammonia oxidation, nitrite oxidation, nitrate reduction and nitrite uptake. The first two processes are mediated by the nitrifying archaeal/bacterial community, while the second two processes are primarily conducted by phytoplankton. The overlapping spatial habitats and substrate requirements for these microbes …


Exploration Of Metal-Carbonyl Complexes For Decarbonylation Reactions, Rebekah C. Krupa Jan 2023

Exploration Of Metal-Carbonyl Complexes For Decarbonylation Reactions, Rebekah C. Krupa

Graduate Theses, Dissertations, and Problem Reports

In recent years, transition metal-mediated decarbonylation reactions have emerged as an alternative to conventional cross-coupling methods due to the advantages associated with the use of carbonyl-containing functionalities as coupling electrophiles instead of organohalides found in traditional cross-coupling reactions. This, coupled with the ubiquity of carbonyl-containing compounds in pharmaceuticals and non-biodegradable chemicals, has led to the interest in developing efficient systems for transition metal-catalyzed decarbonylation. However, these reactions are commonly limited to stoichiometric amounts of metal reagents due to the strong metal-carbonyl bond formed during transition metal-mediated decarbonylation. With the goal of gaining a better mechanistic understanding of CO dissociation in …


Infiltration-Controlled Combustion Of Lithium And Magnesium Powders And Reactions Of Lithium With Oxygen And Carbon Dioxide, Kevin Samuel Estala Rodriguez Dec 2022

Infiltration-Controlled Combustion Of Lithium And Magnesium Powders And Reactions Of Lithium With Oxygen And Carbon Dioxide, Kevin Samuel Estala Rodriguez

Open Access Theses & Dissertations

Chemical heat integrated power systems are of great interest for space missions where solar energy, nuclear energy, and batteries are not available or are not practical to use. A new concept of a power system is a metal combustor coupled with a chemical oxygen generator, where the generated oxygen infiltrates through the metal powder or combustion products. The combustion of lithium and magnesium powders under these conditions has not been studied yet. The present work investigates combustion of magnesium powder and stabilized lithium metal powder (SLMP) ignited by a laser inside a closed chamber filled with O2 or CO2. It …


Temperature-Resolved Surface Infrared Spectroscopy Of Co On Rh(111) And (2 × 1)-O/Rh(111), Elizabeth A. Jamka, Maxwell Z. Gillum, Christina N. Grytsyshyn-Giger, Faith J. Lewis, Daniel Killelea Jun 2022

Temperature-Resolved Surface Infrared Spectroscopy Of Co On Rh(111) And (2 × 1)-O/Rh(111), Elizabeth A. Jamka, Maxwell Z. Gillum, Christina N. Grytsyshyn-Giger, Faith J. Lewis, Daniel Killelea

Chemistry: Faculty Publications and Other Works

Heterogeneously catalyzed reactions over transition metal surfaces are pillars of chemical industry and account for a significant fraction of the global energy demand. CO oxidation provides insight into the relative reactivity of various oxygenaceous surface phases, and it is necessary to first understand where it binds to the surface and the nature of the local environment to develop robust mechanistic pictures of the reaction. Surface IR spectroscopy is a quantitative technique that also provides information about the binding sites and chemical environments of the adsorbed CO molecules. Here, we report results from a study of CO sticking to clean Rh(111) …


Effects Of Nitrate On Arsenic Mobilization During Aquifer Storage And Recovery, Hania Hawasli Oct 2021

Effects Of Nitrate On Arsenic Mobilization During Aquifer Storage And Recovery, Hania Hawasli

USF Tampa Graduate Theses and Dissertations

Aquifer storage and recovery technology is used to sustain water resources and to prevent saltwater intrusion. The injected water can come from various resources, including treated wastewater. In pilot ASR studies in the Tampa Bay region, researchers found high As concentrations in the recovered water from the oxidation of the arsenopyrite that is embedded in the aquifers. The presence of dissolved O2 in the injected water is a major factor in the arsenopyrite oxidation during ASR, however the effects of NO3- on the arsenopyrite has not been studied yet. This is an important knowledge gap because injected water may contain …


Visible Light Generation And Mechanistic Investigation Of High-Valent Metal-Oxo Species Supported By Different Ligands, Seth Ellis Klaine Apr 2021

Visible Light Generation And Mechanistic Investigation Of High-Valent Metal-Oxo Species Supported By Different Ligands, Seth Ellis Klaine

Masters Theses & Specialist Projects

Numerous transition metal catalysts have been designed as biomimetic model compounds for the active site of metalloenzymes found throughout Nature, most notably cytochrome P450 monooxygenases that carry out the oxidative transformations of organic substrates with near-perfect chemo-, regio-, and stereo-selectivity. The primary active oxidants in catalytic and enzymatic cycles are fleeting high-valent metal-oxo intermediates where the oxo ligand can transfer to an organic substrate in a process known as oxygen atom transfer (OAT).

In the present work, porphyrin-manganese(III), salen-chromium(III), and salenmanganese( III) derivatives were successfully synthesized and spectroscopically characterized using 1H NMR and UV-Vis spectroscopies. A facile photochemical approach was …


Advanced Raman Spectroscopy Detection Of Oxidative Damage In Nucleic Acid Bases: Probing Chemical Changes And Intermolecular Interactions In Guanosine At Ultralow Concentration, Francesca Ripanti, Claudia Fasolato, Flavia Mazzarda, Simonetta Palleschi, Marina Ceccarini, Chunchun Li, Margherita Bignami, Enrico Bodo, Steven E.J. Bell, Filomena Mazzei, Paolo Postorino Jan 2021

Advanced Raman Spectroscopy Detection Of Oxidative Damage In Nucleic Acid Bases: Probing Chemical Changes And Intermolecular Interactions In Guanosine At Ultralow Concentration, Francesca Ripanti, Claudia Fasolato, Flavia Mazzarda, Simonetta Palleschi, Marina Ceccarini, Chunchun Li, Margherita Bignami, Enrico Bodo, Steven E.J. Bell, Filomena Mazzei, Paolo Postorino

Bioelectrics Publications

DNA/RNA synthesis precursors are especially vulnerable to damage induced by reactive oxygen species occurring following oxidative stress. Guanosine triphosphates are the prevalent oxidized nucleotides, which can be misincorporated during replication, leading to mutations and cell death. Here, we present a novel method based on micro-Raman spectroscopy, combined with ab initio calculations, for the identification, detection, and quantification of oxidized nucleotides at low concentration. We also show that the Raman signature in the terahertz spectral range (<100 >cm(-1)) contains information on the intermolecular assembly of guanine in tetrads, which allows us to further boost the oxidative damage detection limit. Eventually, we …


Stability Of Group Four Monochalcogenides In Water And Air, William Shattuck Dec 2020

Stability Of Group Four Monochalcogenides In Water And Air, William Shattuck

Graduate Theses and Dissertations

Previously published works have simulated the behavior of monolayer group IV monochalcogenides and predicted them to have very useful electronic properties. These simulations have also predicted that monolayers of group IV monochalcogenides will degrade quickly when exposed to water, even in extremely low concentrations. We hypothesize that thin samples of these materials will show signs of degradation if left in air and in water for an extended period of time.

Samples of each of the four monochalcogenides (GeS, GeSe, SnS and SnSe) were exfoliated onto clean oxidized silicon substrates. Chemical analysis showed the SnSe samples were contaminated, so they were …


Synthesis, Characterization, And Kinetics Studies Of New Cobalt Complexes For The Production Of H2 In Acidic Media, Michael John Celestine Dec 2020

Synthesis, Characterization, And Kinetics Studies Of New Cobalt Complexes For The Production Of H2 In Acidic Media, Michael John Celestine

Chemistry & Biochemistry Theses & Dissertations

The kinetics and mechanism of the oxidation of [Co(dmgBF2)2(OH2)2] (where dmgBF2 = difluoroboryldimethylglyoximato) by sodium hypochlorite (NaOCl), sodium bromate (NaBrO3), and bromine (Br2) was investigated by stopped-flow spectrophotometry at 450 nm over a wide temperature range. The pKa1 value for [Co(dmgBF2)2(OH2)2] was calculated as 5.27 ± 0.14 at I = 0.60 (NaCl). From the variation in pH studies, the activation parameters were derived from the proposed mechanisms for NaOCl, ΔH1*, ΔH2*, ΔS1*, and …


Oxidation Of Phenolic Aldehydes By Ozone And Hydroxyl Radicals At The Air-Water Interface, Md Sohel Rana, Marcelo I. Guzman Oct 2020

Oxidation Of Phenolic Aldehydes By Ozone And Hydroxyl Radicals At The Air-Water Interface, Md Sohel Rana, Marcelo I. Guzman

Chemistry Faculty Publications

Biomass burning releases highly reactive methoxyphenols into the atmosphere, which can undergo heterogeneous oxidation and act as precursors for secondary organic aerosol (SOA) formation. Understanding the reactivity of such methoxyphenols at the air–water interface is a matter of major atmospheric interest. Online electrospray ionization mass spectrometry (OESI-MS) is used here to study the oxidation of two methoxyphenols among three phenolic aldehydes, 4-hydroxybenzaldehyde, vanillin, and syringaldehyde, on the surface of water. The OESI-MS results together with cyclic voltammetry measurements at variable pH are integrated into a mechanism describing the heterogeneous oxidative processing of methoxyphenols by gaseous ozone (O3) and …


The Statue Of Liberty Laboratory Activity: The Chemistry Of Copper, Jihyun Kim, Marcus D. Allen Sep 2020

The Statue Of Liberty Laboratory Activity: The Chemistry Of Copper, Jihyun Kim, Marcus D. Allen

Open Educational Resources

In this lab activity we observe chemical changes of copper in acidic conditions, salt water, and a mixture of lemon juice and vinegar and salt, and we discuss whether the Statue of Liberty would hold as much cultural icon today had the Lady Statue remain the original shiny brown color.


Approaches Towards The Synthesis Of Ketamine Metabolites, Ann K. Patrick May 2020

Approaches Towards The Synthesis Of Ketamine Metabolites, Ann K. Patrick

Honors Theses

Major Depressive disorder (MDD) plagues society and stands at the forefront of research as MDD affects approximately 16% of the population. Pharmaceutical drugs, including the selective serotonin reuptake inhibitors (SSRIs), have been used for MDD treatment and remain a popular option today. However, current antidepressant treatments have proven to be ineffective in just less than half of the patients. Research continues with the goal to better understand the mechanisms of the pathology of depression and to search for other treatment options. For example, the stress-neurogenesis hypothesis investigates the role of stress and decreased neuroplasticity within MDD.

Supporting the stress-neurogenesis hypothesis, …


Ferrate(Vi) For Wastewater Treatment : Phosphorus Removal, Lei Zheng May 2020

Ferrate(Vi) For Wastewater Treatment : Phosphorus Removal, Lei Zheng

Theses, Dissertations and Culminating Projects

Phosphorus (P) is a major nutrient present in municipal wastewater. Without proper treatment and management, residual P in treated wastewater finally enters into natural receiving water bodies. Nutrient pollution resulting from excessive P, together with the other nutrient, i.e. nitrogen (N), is a leading cause of eutrophication, a ubiquitous U.S. water quality issue. An overgrowth of algae during eutrophication brings extremely adverse impacts on the water quality. The algal bloom can rapidly deplete dissolved oxygen, lead to the death of aquatic life, increase water turbidity, and cause taste and odor issues. Moreover, some harmful algal boom can produce toxins to …


Brown Carbon Production By Aqueous-Phase Interactions Of Glyoxal And So2, David O. De Haan, Kevin Jansen, Alec D. Rynaski, W. Ryan P. Sueme, Ashley K. Torkelson, Eric T. Czer, Alexander K. Kim, Michael A. Rafla, Audrey C. De Haan, Margaret A. Tolbert Mar 2020

Brown Carbon Production By Aqueous-Phase Interactions Of Glyoxal And So2, David O. De Haan, Kevin Jansen, Alec D. Rynaski, W. Ryan P. Sueme, Ashley K. Torkelson, Eric T. Czer, Alexander K. Kim, Michael A. Rafla, Audrey C. De Haan, Margaret A. Tolbert

Chemistry and Biochemistry: Faculty Scholarship

Oxalic acid and sulfate salts are major components of aerosol particles. Here, we explore the potential for their respective precursor species, glyoxal and SO2, to form atmospheric brown carbon via aqueous-phase reactions in a series of bulk aqueous and flow chamber aerosol experiments. In bulk aqueous solutions, UV- and visible-light-absorbing products are observed at pH 3–4 and 5–6, respectively, with small but detectable yields of hydroxyquinone and polyketone products formed, especially at pH 6. Hydroxymethanesulfonate (HMS), C2, and C3 sulfonates are major products detected by electrospray ionization mass spectrometry (ESI-MS) at pH 5. Past studies …


Green Chemistry: The Oxidation Of Benzaldehyde Using Atmospheric Oxygen And N-Heterocyclic Carbenes As Catalysts, Alex Brody, John Morgan Jan 2020

Green Chemistry: The Oxidation Of Benzaldehyde Using Atmospheric Oxygen And N-Heterocyclic Carbenes As Catalysts, Alex Brody, John Morgan

Student Research Poster Presentations 2020

Oxidation is a vital process in organic and biochemical reactions. In particular, the oxidation of aromatic aldehydes to carboxylic acids and esters is a vital process used in many different environments. Benzaldehyde is one common subject of this type of reaction, used in the synthesis of benzoic acid and benzoate derivatives. Unfortunately, the industrial synthesis of these compounds uses harmful heavy metal oxidants such as Chromium(VI) and Manganese(VII), which are very harmful to the environment. We proposed to eliminate these pollutants by using atmospheric oxygen and an organic catalyst in a solvent free reaction. This reaction would then be microwaved …


Electron Tunneling And X-Ray Photoelectron Spectoscopy Studies Of The Superconductiong Properties Of Nitrogen-Doped Niobium Resonator Cavities, Eric M. Lechner, Basu Dev Oli, Junki Makita, Gianluigi Ciovati, Alex Gurevich, Maria Iavarone Jan 2020

Electron Tunneling And X-Ray Photoelectron Spectoscopy Studies Of The Superconductiong Properties Of Nitrogen-Doped Niobium Resonator Cavities, Eric M. Lechner, Basu Dev Oli, Junki Makita, Gianluigi Ciovati, Alex Gurevich, Maria Iavarone

Physics Faculty Publications

We use scanning tunneling microscopy (STM) and spectroscopy (STS), and x-ray photoelectron spectroscopy (XPS) to investigate the effect of nitrogen doping on the surface electronic and chemical structures of cutouts from superconducting Nb radio-frequency cavities. The goal of this work is to get insights into the fundamental physics and materials mechanisms behind the striking decrease of the surface resistance with the radio-frequency magnetic field, which has been observed on N-doped Nb cavities. Our XPS measurements reveal significantly more oxidized Nb 3d states and a thinner metallic suboxide layer on the N-doped Nb surfaces, which is also confirmed by tunneling spectroscopy …


Carbon Oxidation At The Atomic Level: A Computational Study On Oxidative Graphene Etching And Pitting Of Graphitic Carbon Surfaces, Simon Schmitt Jan 2020

Carbon Oxidation At The Atomic Level: A Computational Study On Oxidative Graphene Etching And Pitting Of Graphitic Carbon Surfaces, Simon Schmitt

Theses and Dissertations--Mechanical Engineering

In order to understand the oxidation of solid carbon materials by oxygen-containing gases, carbon oxidation has to be studied on the atomic level where the surface reactions occur. Graphene and graphite are etched by oxygen to form characteristic pits that are scattered across the material surface, and pitting in turn leads to microstructural changes that determine the macroscopic oxidation behavior. While this is a well-documented phenomenon, it is heretofore poorly understood due to the notorious difficulty of experiments and a lack of comprehensive computational studies. The main objective of the present work is the development of a computational framework from …


Electrochemical Determination Of Surface Area-To-Volume Ratio For Metal Nanoparticle Analysis., Jay Narayan Sharma Dec 2019

Electrochemical Determination Of Surface Area-To-Volume Ratio For Metal Nanoparticle Analysis., Jay Narayan Sharma

Electronic Theses and Dissertations

This dissertation describes an electrochemical approach for measuring the surface area-to-volume ratio (SA/V) of electrode-attached metal nanoparticles (NPs), which was used to analyze their size, aggregation state, and porosity. This dissertation further describes the effect of the metal NP electrode assembly method on the SA/V, which is related to metal NP catalytic activity and stability. Cyclic voltammetry (CV) in acid electrolyte followed by anodic stripping voltammetry (ASV) in KBr electrolyte allows the electrochemical measurement of the SA/V of electrode-attached Au nanospheres (NSs). In CV, the forward scan produces a thin surface Au2O3 layer on the Au NSs. …


Convective Instabilities Derived From Dissipation Of Chemical Energy, Reuben H. Simoyi, Matthew W. Eskew Aug 2019

Convective Instabilities Derived From Dissipation Of Chemical Energy, Reuben H. Simoyi, Matthew W. Eskew

Chemistry Faculty Publications and Presentations

Oxidation reactions of a series of organosulfur compounds by chlorite are excitable, autocatalytic, and exothermic and generate a lateral instability upon being triggered by the autocatalyst. This article reports on the convective instabilities derived from the reaction of chlorite and thiourea in a Hele-Shaw cell. Reagent concentrations used for the development of convective instabilities delivered a temperature jump at the wave front of 2.1 K. The reaction zone was 2 mm and due to normal cooling after the wave front, this induced a spike rather than the standard well-studied front propagation. Localized spatiotemporal patterns develop around the wave front. This …


Thermal Oxidation Of Silicon In A Home-Made Furnace System, Joshua Koskan Apr 2019

Thermal Oxidation Of Silicon In A Home-Made Furnace System, Joshua Koskan

Physics Capstone Projects

I approached Dr. Shen with a desire for a project in understanding how to manage and expand the capabilities of a laboratory. After some discussion, my senior project was to complete a gas and water chiller system to an existing furnace for chemical vapor deposition. It should be able to handle temperatures up to 1100 ºC, hold a vacuum to mTorr, be easy to move samples in and out of the furnace, and cost effective.


Preservation Protocols For Maintaining Species Stability Of Arsenic, Chromium, And Selenium In Water Samples, Contessa Lowery Jan 2019

Preservation Protocols For Maintaining Species Stability Of Arsenic, Chromium, And Selenium In Water Samples, Contessa Lowery

Water Resources Professional Project Reports

Water quality has become an increasing concern in recent years. The environmental challenges surrounding water quality include the presence of dissolved metals and their potential impact on human health and the environment. The challenge is exacerbated because many important metals have multiple oxidation states, which affect the health and environmental behavior of the metal. Many metals are known carcinogens and increased anthropogenic effects have inexorably made metals’ accumulation an imposing threat. Analytical instrumentation has advanced in many areas, making it now possible to measure very low concentrations of multiple elements in water. Current interest is determining the chemical speciation of …


Ab Initio Atomistic Thermodynamics Modeling Of Adsorption Of Oxygen On Goldand Gold-Silver Surfaces, Mehmet Gökhan Şensoy Jan 2019

Ab Initio Atomistic Thermodynamics Modeling Of Adsorption Of Oxygen On Goldand Gold-Silver Surfaces, Mehmet Gökhan Şensoy

Turkish Journal of Physics

A theoretical study of oxygen adsorption on gold and gold-silver surfaces by means of density functional theory (DFT) calculations with an atomistic thermodynamic model is performed. The (111) and (211) facets of gold and gold-silver alloy surfaces are considered, and their stabilization is discussed upon adsorption of oxygen depending on O and Ag coverage. The details of how the DFT-based atomistic thermodynamic model can apply to the transition metal surface are also presented in this work.


Oxidative Depolymerization Of Lignin To Low Molecular Weight Aromatics, Yang Song Jan 2019

Oxidative Depolymerization Of Lignin To Low Molecular Weight Aromatics, Yang Song

Theses and Dissertations--Chemistry

To date, most lignocellulosic biorefinery strategies have focused on optimizing conversion of cellulose to ethanol, leaving lignin as an underutilized biomass constituent. Lignin is engineered by nature with the intent to protect plants from chemical and biological attack; this leaves lignin with high structural irregularity and recalcitrance, rendering conversion of the lignin macromolecule to valuable products particularly challenging. Nevertheless, given that the economics of cellulosic ethanol production are strongly dependent on the value that can be obtained for the lignin co-product, the successful valorization of lignin is a crucial step in the transition towards a bio-based economy.

This thesis focuses …


Atom-Specific Activation In Co Oxidation, Simon Schreck, Elias Diesen, Jerry Larue, Hirohito Ogasawara, Kess Marks, Dennis Nordlund, Matthew Weston, Martin Beye, Filippo Cavalca, Fivos Perakis, Jonas Sellberg, André Eilert, Kyung Hwan Kim, Giacomo Coslovich, Ryan Coffee, Jacek Krzywinski, Alex Reid, Stefan Moeller, Alberto Lutman, Henrik Öström, Lars G. M. Pettersson, Anders Nilsson Dec 2018

Atom-Specific Activation In Co Oxidation, Simon Schreck, Elias Diesen, Jerry Larue, Hirohito Ogasawara, Kess Marks, Dennis Nordlund, Matthew Weston, Martin Beye, Filippo Cavalca, Fivos Perakis, Jonas Sellberg, André Eilert, Kyung Hwan Kim, Giacomo Coslovich, Ryan Coffee, Jacek Krzywinski, Alex Reid, Stefan Moeller, Alberto Lutman, Henrik Öström, Lars G. M. Pettersson, Anders Nilsson

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We report on atom-specific activation of CO oxidation on Ru(0001) via resonant X-ray excitation. We show that resonant 1s core-level excitation of atomically adsorbed oxygen in the co-adsorbed phase of CO and oxygen directly drives CO oxidation. We separate this direct resonant channel from indirectly driven oxidation via X-ray induced substrate heating. Based on density functional theory calculations, we identify the valence-excited state created by the Auger decay as the driving electronic state for direct CO oxidation. We utilized the fresh-slice multi-pulse mode at the Linac Coherent Light Source that provided time-overlapped and 30 fs delayed pairs of soft …


The Investigation Of The Chlorine Initiated Oxidation Of 2-Phenylethanol And Stability Of Superalkali Lithium Substituted Silyls., Adam Otten Dec 2018

The Investigation Of The Chlorine Initiated Oxidation Of 2-Phenylethanol And Stability Of Superalkali Lithium Substituted Silyls., Adam Otten

Master's Theses

This thesis investigates the combustion potential of 2-phenylethanol and the superalkali properties of small lithium substituted silicon compounds. All combustion experiments were performed at the Advanced Light Source of Lawrence Berkeley National Laboratory at the Chemical Dynamics Beamline 9.0.2. The chlorine initiated oxidation of 2PE was investigated at 298 and 550 K using a multiplex photoionization mass spectrometer, coupled with the tunable vacuum ultraviolet radiation. Reaction products were identified using kinetic time traces and photoionization spectra.

Additionally, the stability of small superalkali silicon-lithium compounds has also been investigated. All structures and energetics were calculated using the CBS-QB3 composite method.

The …


H2 Oxidation Over Supported Au Nanoparticle Catalysts: Evidence For Heterolytic H2 Activation At The Metal-Support Interface, Todd N. Whittaker, K. B. Sravan Kumar, Christine Peterson, Meagan N. Pollock, L. C. Grabow, Bert D. Chandler Dec 2018

H2 Oxidation Over Supported Au Nanoparticle Catalysts: Evidence For Heterolytic H2 Activation At The Metal-Support Interface, Todd N. Whittaker, K. B. Sravan Kumar, Christine Peterson, Meagan N. Pollock, L. C. Grabow, Bert D. Chandler

Chemistry Faculty Research

Water adsorbed at the metal-support interface (MSI) plays an important role in multiple reactions. Due to its importance in CO preferential oxidation (PrOx), we examined H2 oxidation kinetics in the presence of water over Au/TiO2 and Au/Al2O3 catalysts, reaching the following mechanistic conclusions: (i) O2 activation follows a similar mechanism to that proposed in CO oxidation catalysis; (ii) weakly adsorbed H2O is a strong reaction inhibitor; (iii) fast H2 activation occurs at the MSI, and (iv) H2 activation kinetics are inconsistent with traditional dissociative H2 chemisorption on metals. Density …


No2- And No3- Enhance Cold Atmospheric Plasma Induced Cancer Cell Death By Generation Of Onoo-, Dehui Xu, Qingjie Cui, Yujing Xu, Zhijie Liu, Zeyu Chen, Wenjie Xia, Hao Zhang, Dingxin Liu, Hailan Chen, Michael G. Kong Oct 2018

No2- And No3- Enhance Cold Atmospheric Plasma Induced Cancer Cell Death By Generation Of Onoo-, Dehui Xu, Qingjie Cui, Yujing Xu, Zhijie Liu, Zeyu Chen, Wenjie Xia, Hao Zhang, Dingxin Liu, Hailan Chen, Michael G. Kong

Bioelectrics Publications

Cold atmospheric plasma (CAP) is a rapidly developed technology that has been widely applied in biomedicine especially in cancer treatment. Due to the generation of various active species in plasma, CAP could induce various tumor cells death and showed a promising potential in cancer therapy. To enhance the biological effects of gas plasma, changing the discharging parameters is the most commonly used method, yet increasing discharging power will lead to a higher possibility of simultaneously damage surrounding tissues. In this study, by adding nontoxic concentration of additional nitrite and nitrate in the medium, we found that anti-tumor effect of CAP …