Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Physical Sciences and Mathematics

Synthesis And Assembly Of Polymer Materials At Interfaces, Xiaoshuang Wei Oct 2022

Synthesis And Assembly Of Polymer Materials At Interfaces, Xiaoshuang Wei

Doctoral Dissertations

The overarching goal of the thesis is to understand growth and assembly of polymer materials at interfaces. Chapter 2 and Chapter 3 study simultaneous polymer growth and assembly at fluid interfaces, where in-situ photopolymerization and vapor phase deposition were utilized to grow polymers, respectively. Chapter 4 leverages capillary condensation to pattern polymer growth at solid substrates. Chapter 1 provides background information on polymer materials at interfaces, and vapor phase deposition method (initiated chemical vapor deposition, iCVD) to grow polymers. This chapter also reviews polymer thin film wetting, and colloidal assemblies at interfaces. In Chapter 2, we demonstrate the preparation …


Comparing Laser Assisted Pulling And Chemical Vapor Deposition Methods In The Fabrication Of Carbon Ultramicro- And Nanoelectrodes, Theophilus Neequaye Aug 2018

Comparing Laser Assisted Pulling And Chemical Vapor Deposition Methods In The Fabrication Of Carbon Ultramicro- And Nanoelectrodes, Theophilus Neequaye

Electronic Theses and Dissertations

Ultramicroelectrodes (UMEs) (limiting dimensions <~25 μm) and nanoelectrodes (<~100 nm) exhibit enhanced electrochemical properties compared to macroscopic electrodes. Their small sizes and enhanced properties make them well-suited for various interesting and important applications such as measuring redox-active species in nonaqueous solvents, studying intermediates of fast electrochemical reactions, and investigating electrochemical and electrocatalytic properties of single nanoparticles. While UMEs are commercially available, nanoelectrode fabrication is still largely confined to research labs. Various methods for constructing nanoelectrodes have been reported and continue to be developed, but most require considerable expertise, and comparisons between different fabrication processes are lacking. In this work, a comparison of laser-assisted pulling and chemical vapor deposition (CVD) methods of electrode fabrication is made with the aim of optimizing production of carbon nanoelectrodes for single nanoparticle electrochemical measurements. By examining effects of pulling parameters, post-pulling treatments, and CVD processing, electrodes as small as ~50 nm were successfully produced.


Measuring The Double Layer Capacitance Of Electrolyte Solutions Using A Graphene Field Effect Transistor, Agatha Ulibarri May 2018

Measuring The Double Layer Capacitance Of Electrolyte Solutions Using A Graphene Field Effect Transistor, Agatha Ulibarri

Senior Theses

When operating graphene field effect transistors (GFETs) in fluid, a double layer capacitance (Cdl) is formed at the surface. In the literature, the Cdl is estimated using values obtained using metal electrode experiments. Due to the distinctive electronic and surface properties of graphene, there is reason to believe these estimates are inadequate. This work seeks to directly characterize the double layer capacitance of a GFET. A unique method for determining the Cdl has been implemented, and data has been obtained for three electrolytes and one ionic fluid. The results yield dramatically lower Cdl values than …


Epitaxial Growth Of Silicon On Poly-Crystalline Si Seed Layer At Low Temperature By Using Hot Wire Chemical Vapor Deposition, Manal Abdullah Aldawsari May 2015

Epitaxial Growth Of Silicon On Poly-Crystalline Si Seed Layer At Low Temperature By Using Hot Wire Chemical Vapor Deposition, Manal Abdullah Aldawsari

Graduate Theses and Dissertations

There has been a growing interest in using low cost material as a substrate for the large grained polycrystalline silicon photovoltaic devices. The main property of those devices is the potential of obtaining high efficiency similar to crystalline Si devices efficiency yet at much lower cost because of the thin film techniques. Epitaxial growth of Si at low temperatures on low cost large grained seed layers, prepared by aluminum induced crystallization method (AIC), using hot wire chemical vapor deposition (HWCVD) system is investigated in this thesis. In this work, different parameters have been studied in order to optimize the growth …


Metal Oxide Growth, Spin Precession Measurements And Raman Spectroscopy Of Cvd Graphene, Akitomo Matsubayashi Jan 2014

Metal Oxide Growth, Spin Precession Measurements And Raman Spectroscopy Of Cvd Graphene, Akitomo Matsubayashi

Legacy Theses & Dissertations (2009 - 2024)

The focus of this dissertation is to explore the possibility of wafer scale graphene-based spintronics. Graphene is a single atomic layer of sp2 bonded carbon atoms that has attracted much attention as a new type of electronic material due to its high carrier mobilities, superior mechanical properties and extremely high thermal conductivity. In addition, it has become an attractive material for use in spintronic devices owing to its long electron spin relaxation time at room temperature. This arises in part from its low spin-orbit coupling and negligible nuclear hyperfine interaction. In order to realize wafer scale graphene spintronics, utilization of …


Microfabrication, Characterization, And Application Of Carbon Nanotube Templated Thin Layer Chromatography Plates, And Functionalization Of Porous Graphitic Carbon, David S. Jensen Nov 2012

Microfabrication, Characterization, And Application Of Carbon Nanotube Templated Thin Layer Chromatography Plates, And Functionalization Of Porous Graphitic Carbon, David S. Jensen

Theses and Dissertations

This dissertation contains the following sections. Chapter 1 contains a detailed description of the theory of thin layer chromatography (TLC). Chapter 2 describes the benefits and practical considerations of elevated temperatures in liquid chromatography (LC). The porous graphitic carbon (PGC) I modified as part of my work is often used in elevated temperature LC. Chapter 3 shows a thermodynamic analysis of chromatographic retention at elevated temperature, and Chapter 4 contains a closer look at the van 't Hoff equation in LC and how it can be used in retention modeling. In Chapter 5, I describe a new procedure for microfabricating …


Use Of Ultra High Vacuum Plasma Enhanced Chemical Vapor Deposition For Graphene Fabrication, Shannen Adcock May 2012

Use Of Ultra High Vacuum Plasma Enhanced Chemical Vapor Deposition For Graphene Fabrication, Shannen Adcock

Graduate Theses and Dissertations

Graphene, what some are terming the "new silicon", has the possibility of revolutionizing technology through nanoscale design processes. Fabrication of graphene for device processing is limited largely by the temperatures used in conventional deposition. High temperatures are detrimental to device design where many different materials may be present. For this reason, graphene synthesis at low temperatures using plasma-enhanced chemical vapor deposition is the subject of much research. In this thesis, a tool for ultra-high vacuum plasma-enhanced chemical vapor deposition (UHV-PECVD) and accompanying subsystems, such as control systems and alarms, are designed and implemented to be used in future graphene growths. …


Chemical Vapor Deposition Of Silanes And Patterning On Silicon, Feng Zhang Dec 2010

Chemical Vapor Deposition Of Silanes And Patterning On Silicon, Feng Zhang

Theses and Dissertations

Self assembled monolayers (SAMs) are widely used for surface modification. Alkylsilane monolayers are one of the most widely deposited and studied SAMs. My work focuses on the preparation, patterning, and application of alkysilane monolayers. 3-aminopropyltriethoxysilane (APTES) is one of the most popular silanes used to make active surfaces for surface modification. To possibly improve the surface physical properties and increase options for processing this material, I prepared and studied a series of amino silane surfaces on silicon/silicon dioxide from APTES and two other related silanes by chemical vapor deposition (CVD). I also explored CVD of 3-mercaptopropyltrimethoxysilane on silicon and quartz. …


Investigation Of Carbon Nanotube Growth Using A Nozzle Cvd Method, James Mcfarland Apr 2006

Investigation Of Carbon Nanotube Growth Using A Nozzle Cvd Method, James Mcfarland

Pomona Senior Theses

This work uses a modification of the chemical vapor deposition (CVD) technique to study the effects of source gas flow geometry (and the corresponding parameters) on carbon nanotube growth. Our approach is to flow the carbon-containing source gas through a nozzle, projecting the gas stream onto targeted regions of the substrate. This technique not only allows the potential for localized nanotube growth, but also offers an interesting opportunity to provide an experimental test of theoretical nanotube growth models.


Integrated Modeling And Parallel Computation Of Laser-Induced Axisymmetric Rod Growth, Hong Lan Apr 2005

Integrated Modeling And Parallel Computation Of Laser-Induced Axisymmetric Rod Growth, Hong Lan

Doctoral Dissertations

To fully investigate a pyrolytic Laser-induced chemical vapor deposition (LCVD) system for growing an axisymmetric rod, a novel integrated three-dimensional mathematical model was developed not only to describe the heat transport in the deposit and substrate, but also to simulate the gas-phase in the heated reaction zone and its effect on growth rate. The integrated model consists of three components: the substrate, rod, and gas-phase domains. Each component is a separate model and the three components are dynamically integrated into one model for simulating the iterative and complex process of rod deposition.

The gas-phase reaction is modeled by the gas-phase …


Steps Toward The Creation Of A Carbon Nanotube Single Electron Transistor, R. Matthew Ferguson May 2003

Steps Toward The Creation Of A Carbon Nanotube Single Electron Transistor, R. Matthew Ferguson

Pomona Senior Theses

This report details work toward the fabrication of a single-electron transistor created from a single-walled carbon nanotube (SWNT). Specifically discussed is a method for growing carbon nanotubes (CNTs) via carbon vapor deposition (CVD). The growth is catalyzed by a solution of 0.02g Fe(NO3)3·9H2O, 0.005g MoO2(acac)2, and 0.015g of alumina particles in 15mL methanol. SWNT diameter ranges from 0.6 to 3.0 nm. Also discussed is a method to control nanotube growth location by patterning samples with small islands of catalyst. A novel “maskless” photolithographic process is used to focus light from a lightweight commercial digital projector through a microscope. Catalyst islands …


Steps Toward The Creation Of A Carbon Nanotube Single Electron Transistor, R. Matthew Ferguson May 2003

Steps Toward The Creation Of A Carbon Nanotube Single Electron Transistor, R. Matthew Ferguson

Pomona Senior Theses

This report details work toward the fabrication of a single-electron transistor created from a single-walled carbon nanotube (SWNT). Specifically discussed is a method for growing carbon nanotubes (CNTs) via carbon vapor deposition (CVD). The growth is catalyzed by a solution of 0.02g Fe(NO3)3·9H2O, 0.005g MoO2(acac)2, and 0.015g of alumina particles in 15mL methanol. SWNT diameter ranges from 0.6 to 3.0 nm. Also discussed is a method to control nanotube growth location by patterning samples with small islands of catalyst. A novel “maskless” photolithographic process is used to focus light from a lightweight commercial digital projector through a microscope. Catalyst islands …


Photoluminescence Study Of Gallium Arsenide, Aluminum Gallium Arsenide, And Gallium Antimonide Thin Films Grown By Metalorganic Chemical Vapor Deposition, John Mark Koons Jan 1994

Photoluminescence Study Of Gallium Arsenide, Aluminum Gallium Arsenide, And Gallium Antimonide Thin Films Grown By Metalorganic Chemical Vapor Deposition, John Mark Koons

Theses

The photoluminescence produced by four MOCVD grown epitaxial thin film samples was studied to give insight into sample quality. The four samples under this study were GaAs on a GaAs substrate, Al.25Ga.75As on a GaAs substrate, Al.30Ga.7OAs on a GaAs substrate, and GaSb on a GaSb substrate. Excitation was achieved through the use of the 514.0 nm line of an argon ion laser, and sample cooling was attained by use of a cryostat cooler using helium gas to attain a low temperature limit of 10°K. The GaAs and Al.30Ga.7O …


Characterization Of Low Pressure Chemical Vapor Deposited Silicon Dioxide Thin Films, Xue Du Jan 1992

Characterization Of Low Pressure Chemical Vapor Deposited Silicon Dioxide Thin Films, Xue Du

Theses

LPCVD deposited amorphous silicon dioxide SiO2 thin films from a new chemical vapor source, diethylsilane (DES), were characterized. This work is focused on evaluation of SiO2 films prepared by varies deposition temperatures and flow rates series.

SiO2 thin films were evaluated for density, porosity, and refractive index. Techniques for evaluation of the above mentioned parameters for this work included the use of infrared absorption spectroscopy, preferential etch procedures, optical measurement of refractive index and thickness, and thermal annealing of CVD films. The densification in vacuum ambient has been carried out at the temperature of 600 °, 750 …