Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical vapor deposition

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 25 of 25

Full-Text Articles in Physical Sciences and Mathematics

Synthesis And Assembly Of Polymer Materials At Interfaces, Xiaoshuang Wei Oct 2022

Synthesis And Assembly Of Polymer Materials At Interfaces, Xiaoshuang Wei

Doctoral Dissertations

The overarching goal of the thesis is to understand growth and assembly of polymer materials at interfaces. Chapter 2 and Chapter 3 study simultaneous polymer growth and assembly at fluid interfaces, where in-situ photopolymerization and vapor phase deposition were utilized to grow polymers, respectively. Chapter 4 leverages capillary condensation to pattern polymer growth at solid substrates. Chapter 1 provides background information on polymer materials at interfaces, and vapor phase deposition method (initiated chemical vapor deposition, iCVD) to grow polymers. This chapter also reviews polymer thin film wetting, and colloidal assemblies at interfaces. In Chapter 2, we demonstrate the preparation …


Secondary Electron Yield Measurements Of Carbon Nanotube Forests: Dependence On Morphology And Substrate, Brian Wood, Jordan Lee, Gregory Wilson, T. -C. Shen, Jr Dennison Aug 2019

Secondary Electron Yield Measurements Of Carbon Nanotube Forests: Dependence On Morphology And Substrate, Brian Wood, Jordan Lee, Gregory Wilson, T. -C. Shen, Jr Dennison

Journal Articles

Total, secondary, and backscatter electron yield data were taken with beam energies between 15 eV and 30 keV, in conjunction with energy emission data, to determine the extent of suppression of yield caused by carbon nanotube (CNT) forest coatings on substrates. CNT forests can potentially lower substrate yield due to both its inherently low-yield, low-atomic number (Z) carbon composition, and its bundled, high-aspect ratio structure. Rough surfaces, and in particular, surfaces with deep high-aspect-ratio voids, can suppress yields, as the electrons emitted from lower lying surfaces are recaptured by surface protrusions rather than escaping the near-surface region. Yields of multilayered …


Comparing Laser Assisted Pulling And Chemical Vapor Deposition Methods In The Fabrication Of Carbon Ultramicro- And Nanoelectrodes, Theophilus Neequaye Aug 2018

Comparing Laser Assisted Pulling And Chemical Vapor Deposition Methods In The Fabrication Of Carbon Ultramicro- And Nanoelectrodes, Theophilus Neequaye

Electronic Theses and Dissertations

Ultramicroelectrodes (UMEs) (limiting dimensions <~25 μm) and nanoelectrodes (<~100 nm) exhibit enhanced electrochemical properties compared to macroscopic electrodes. Their small sizes and enhanced properties make them well-suited for various interesting and important applications such as measuring redox-active species in nonaqueous solvents, studying intermediates of fast electrochemical reactions, and investigating electrochemical and electrocatalytic properties of single nanoparticles. While UMEs are commercially available, nanoelectrode fabrication is still largely confined to research labs. Various methods for constructing nanoelectrodes have been reported and continue to be developed, but most require considerable expertise, and comparisons between different fabrication processes are lacking. In this work, a comparison of laser-assisted pulling and chemical vapor deposition (CVD) methods of electrode fabrication is made with the aim of optimizing production of carbon nanoelectrodes for single nanoparticle electrochemical measurements. By examining effects of pulling parameters, post-pulling treatments, and CVD processing, electrodes as small as ~50 nm were successfully produced.


Measuring The Double Layer Capacitance Of Electrolyte Solutions Using A Graphene Field Effect Transistor, Agatha Ulibarri May 2018

Measuring The Double Layer Capacitance Of Electrolyte Solutions Using A Graphene Field Effect Transistor, Agatha Ulibarri

Senior Theses

When operating graphene field effect transistors (GFETs) in fluid, a double layer capacitance (Cdl) is formed at the surface. In the literature, the Cdl is estimated using values obtained using metal electrode experiments. Due to the distinctive electronic and surface properties of graphene, there is reason to believe these estimates are inadequate. This work seeks to directly characterize the double layer capacitance of a GFET. A unique method for determining the Cdl has been implemented, and data has been obtained for three electrolytes and one ionic fluid. The results yield dramatically lower Cdl values than …


Stacking 2d Materials, Michael Hernandez, John C. Mann Mar 2017

Stacking 2d Materials, Michael Hernandez, John C. Mann

Seaver College Research And Scholarly Achievement Symposium

Monolayer Transition Metal Dichalcogenides are atomically thin semi-conductors that are considered quasi 2D materials due to their extremely small thickness. It has been observed that atomically thin crystals exhibit different physical properties than their bulk counterparts due to quantum confinement effects. We are attempting discover new physical properties by developing a technique to stack two different monolayer crystals, MoS2 and MoSe2.


Epitaxial Growth Of Silicon On Poly-Crystalline Si Seed Layer At Low Temperature By Using Hot Wire Chemical Vapor Deposition, Manal Abdullah Aldawsari May 2015

Epitaxial Growth Of Silicon On Poly-Crystalline Si Seed Layer At Low Temperature By Using Hot Wire Chemical Vapor Deposition, Manal Abdullah Aldawsari

Graduate Theses and Dissertations

There has been a growing interest in using low cost material as a substrate for the large grained polycrystalline silicon photovoltaic devices. The main property of those devices is the potential of obtaining high efficiency similar to crystalline Si devices efficiency yet at much lower cost because of the thin film techniques. Epitaxial growth of Si at low temperatures on low cost large grained seed layers, prepared by aluminum induced crystallization method (AIC), using hot wire chemical vapor deposition (HWCVD) system is investigated in this thesis. In this work, different parameters have been studied in order to optimize the growth …


Two-Dimensional Mos_2 As A New Material For Electronic Devices, Natalia Izyumskaya, Denis O. Demchenko, Vitaliy Avrutin, Ümi̇t Özgür, Hadis Morkoç Jan 2014

Two-Dimensional Mos_2 As A New Material For Electronic Devices, Natalia Izyumskaya, Denis O. Demchenko, Vitaliy Avrutin, Ümi̇t Özgür, Hadis Morkoç

Turkish Journal of Physics

We overview fundamental properties, preparation techniques, and potential device applications of single- and few-monolayer-thick molybdenum disulfide MoS_2 belonging to a new emerging class of materials: 2-dimensional semiconductors. To a large extent, the interest in the 2-dimensional materials is fueled by the quest for alternatives to graphene, which is hardly suitable for electronic devices because of the lack of a band gap. A unique combination of physical properties, including flexibility, high electron mobility, and optical transparency combined with a large band gap tunable from indirect 1.2 eV for bulk to direct 1.9 eV for a monolayer, make MoS_2 attractive for a …


Metal Oxide Growth, Spin Precession Measurements And Raman Spectroscopy Of Cvd Graphene, Akitomo Matsubayashi Jan 2014

Metal Oxide Growth, Spin Precession Measurements And Raman Spectroscopy Of Cvd Graphene, Akitomo Matsubayashi

Legacy Theses & Dissertations (2009 - 2024)

The focus of this dissertation is to explore the possibility of wafer scale graphene-based spintronics. Graphene is a single atomic layer of sp2 bonded carbon atoms that has attracted much attention as a new type of electronic material due to its high carrier mobilities, superior mechanical properties and extremely high thermal conductivity. In addition, it has become an attractive material for use in spintronic devices owing to its long electron spin relaxation time at room temperature. This arises in part from its low spin-orbit coupling and negligible nuclear hyperfine interaction. In order to realize wafer scale graphene spintronics, utilization of …


Synthesis And Electrochemical Performance Of Nano Licopo4 By Polyol Method, Fei Wang, Yang Jun Dec 2013

Synthesis And Electrochemical Performance Of Nano Licopo4 By Polyol Method, Fei Wang, Yang Jun

Journal of Electrochemistry

High potential LiCoPO4 cathode material was synthesized by polyol method. Carbon layer of ca. 3 nm thick was coated on the LiCoPO4 surfaces by chemical vapor deposition from methylbenzene. Crystalline structure, morphology and electrochemical performance of the sample were studied by XRD, SEM, TEM, CV and galvanostatic charge/discharge curve. The synthesized material via polyol method showed a pure phase of LiCoPO4. The LiCoPO4/C electrode delivered a high discharge capacity of 132 mAh·g-1 and maintained 78% of the initial capacity after 50 cycles at 0.1C rate. The two-step extraction/insertion behavior of Li+ in LiCoPO4/C …


Microfabrication, Characterization, And Application Of Carbon Nanotube Templated Thin Layer Chromatography Plates, And Functionalization Of Porous Graphitic Carbon, David S. Jensen Nov 2012

Microfabrication, Characterization, And Application Of Carbon Nanotube Templated Thin Layer Chromatography Plates, And Functionalization Of Porous Graphitic Carbon, David S. Jensen

Theses and Dissertations

This dissertation contains the following sections. Chapter 1 contains a detailed description of the theory of thin layer chromatography (TLC). Chapter 2 describes the benefits and practical considerations of elevated temperatures in liquid chromatography (LC). The porous graphitic carbon (PGC) I modified as part of my work is often used in elevated temperature LC. Chapter 3 shows a thermodynamic analysis of chromatographic retention at elevated temperature, and Chapter 4 contains a closer look at the van 't Hoff equation in LC and how it can be used in retention modeling. In Chapter 5, I describe a new procedure for microfabricating …


Spectral Engineering Of Optical Fiber Preforms Through Active Nanoparticle Doping, T. Lindstrom, E. Garber, D. Edmonson, T. Hawkins, Y. Chen, G. Turri, M. Bass, J. Ballato Nov 2012

Spectral Engineering Of Optical Fiber Preforms Through Active Nanoparticle Doping, T. Lindstrom, E. Garber, D. Edmonson, T. Hawkins, Y. Chen, G. Turri, M. Bass, J. Ballato

Publications

Europium doped alkaline earth fluoride [Eu:AEF2 (AE = Ca, Sr, Ba)] nanoparticles were synthesized and systematically incorporated into the core of modified chemical vapor deposition (MCVD)-derived silica-based preforms by solution doping. The resulting preforms were examined to determine the impact of the nanoparticles chemistry on the spectroscopic behavior of the glass. The dominant existence of Eu3+ was demonstrated in all preforms, which is in contrast to conventional solution doped preforms employing dissolved europium salts where Eu2+ is primarily observed. Raman spectroscopy and fluorescence lifetime measurements indicated that the nanoparticles composition is effective in controlling, at a local chemical and structural …


Use Of Ultra High Vacuum Plasma Enhanced Chemical Vapor Deposition For Graphene Fabrication, Shannen Adcock May 2012

Use Of Ultra High Vacuum Plasma Enhanced Chemical Vapor Deposition For Graphene Fabrication, Shannen Adcock

Graduate Theses and Dissertations

Graphene, what some are terming the "new silicon", has the possibility of revolutionizing technology through nanoscale design processes. Fabrication of graphene for device processing is limited largely by the temperatures used in conventional deposition. High temperatures are detrimental to device design where many different materials may be present. For this reason, graphene synthesis at low temperatures using plasma-enhanced chemical vapor deposition is the subject of much research. In this thesis, a tool for ultra-high vacuum plasma-enhanced chemical vapor deposition (UHV-PECVD) and accompanying subsystems, such as control systems and alarms, are designed and implemented to be used in future graphene growths. …


The Density Factor In The Synthesis Of Carbon Nanotube Forest By Injection Chemical Vapor Deposition, Robert W. Call, C. Read, C Mart, T. C. Shen Jan 2012

The Density Factor In The Synthesis Of Carbon Nanotube Forest By Injection Chemical Vapor Deposition, Robert W. Call, C. Read, C Mart, T. C. Shen

Graduate Student Publications

Beneath the seeming straight-forwardness of growing carbon nanotube(CNT) forests by the injection chemical vapor deposition(CVD) method, control of the forest morphology on various substrates is yet to be achieved. Using ferrocene dissolved in xylene as the precursor, we demonstrate that the concentration of ferrocene and the injection rate of the precursor dictate the CNT density of these forests. However, CNT density will also be affected by the substrates and the growth temperature which determine the diffusion of the catalyst adatoms. The CNT growth rate is controlled by the temperature and chemical composition of the gases in the CVD reactor. We …


Chemical Vapor Deposition Of Silanes And Patterning On Silicon, Feng Zhang Dec 2010

Chemical Vapor Deposition Of Silanes And Patterning On Silicon, Feng Zhang

Theses and Dissertations

Self assembled monolayers (SAMs) are widely used for surface modification. Alkylsilane monolayers are one of the most widely deposited and studied SAMs. My work focuses on the preparation, patterning, and application of alkysilane monolayers. 3-aminopropyltriethoxysilane (APTES) is one of the most popular silanes used to make active surfaces for surface modification. To possibly improve the surface physical properties and increase options for processing this material, I prepared and studied a series of amino silane surfaces on silicon/silicon dioxide from APTES and two other related silanes by chemical vapor deposition (CVD). I also explored CVD of 3-mercaptopropyltrimethoxysilane on silicon and quartz. …


High Temperature Rare Earth Compounds: Synthesis, Characterization And Applications In Device Fabrication, Joseph R. Brewer Aug 2010

High Temperature Rare Earth Compounds: Synthesis, Characterization And Applications In Device Fabrication, Joseph R. Brewer

Department of Chemistry: Dissertations, Theses, and Student Research

As the area of nanotechnology continues to grow, the development of new nanomaterials with interesting physical and electronic properties and improved characterization techniques are several areas of research that will be remain vital for continued improvement of devices and the understanding in nanoscale phenomenon. In this dissertation, the chemical vapor deposition synthesis of rare earth (RE) compounds is described in detail. In general, the procedure involves the vaporization of a REClx (RE = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho) in the presence of hydride phase precursors such as decaborane and ammonia at high temperatures and low …


Chemical Vapour Deposition Grown Carbon Nanotubes For Interconnect Technology, R. W. Leahy, E. Lahiff, A Minett, W. J. Blau Jan 2007

Chemical Vapour Deposition Grown Carbon Nanotubes For Interconnect Technology, R. W. Leahy, E. Lahiff, A Minett, W. J. Blau

Faculty of Science - Papers (Archive)

Multiwall carbon nanotubes have been grown by catalytic chemical vapour deposition using iron catalyst particles drop cast onto etched silicon wafers. The catalyst used was poly(styrene-vinylferrocene) in toluene solution which has an iron content of 2.1%. The etched silicon wafers have trench regions of varying widths ranging from 0.32 to 1 μm. For trench widths below 0.5 μm the number of “interconnecting” tubes growing from one side of the trench to the other increases sharply. A significant proportion of these “interconnects” are found to be Y-junction and multiple junction MWNTs. A systematic study of the effects of each of the …


Investigation Of Carbon Nanotube Growth Using A Nozzle Cvd Method, James Mcfarland Apr 2006

Investigation Of Carbon Nanotube Growth Using A Nozzle Cvd Method, James Mcfarland

Pomona Senior Theses

This work uses a modification of the chemical vapor deposition (CVD) technique to study the effects of source gas flow geometry (and the corresponding parameters) on carbon nanotube growth. Our approach is to flow the carbon-containing source gas through a nozzle, projecting the gas stream onto targeted regions of the substrate. This technique not only allows the potential for localized nanotube growth, but also offers an interesting opportunity to provide an experimental test of theoretical nanotube growth models.


Integrated Modeling And Parallel Computation Of Laser-Induced Axisymmetric Rod Growth, Hong Lan Apr 2005

Integrated Modeling And Parallel Computation Of Laser-Induced Axisymmetric Rod Growth, Hong Lan

Doctoral Dissertations

To fully investigate a pyrolytic Laser-induced chemical vapor deposition (LCVD) system for growing an axisymmetric rod, a novel integrated three-dimensional mathematical model was developed not only to describe the heat transport in the deposit and substrate, but also to simulate the gas-phase in the heated reaction zone and its effect on growth rate. The integrated model consists of three components: the substrate, rod, and gas-phase domains. Each component is a separate model and the three components are dynamically integrated into one model for simulating the iterative and complex process of rod deposition.

The gas-phase reaction is modeled by the gas-phase …


Thermochemical And Green Luminescence Analysis Of Zinc Oxide Thin Films Grown On Sapphire By Chemical Vapor Deposition, Abdelkader Djelloul, R. A. Rabadanov Jan 2004

Thermochemical And Green Luminescence Analysis Of Zinc Oxide Thin Films Grown On Sapphire By Chemical Vapor Deposition, Abdelkader Djelloul, R. A. Rabadanov

Turkish Journal of Physics

This study has been carried out to detail an integral thermochemical analysis of the principal reaction in the production of zinc oxide (ZnO) thin films, including developing an analytical form of the equilibrium constant. Zinc oxide thin films prepared by chemical vapor deposition have been studied in terms of deposition time and substrate temperature. The growth of the single-crystal films present two regimes depending on the substrate temperature, with increasing constant growth rates at lower, and higher, temperature ranges, respectively. Growth rates above 6 \mu m \cdot min^{-1} can be achieved at T_s = 880 K. The variation of the …


Long Coherence Times At 300 K For Nitrogen-Vacancy Center Spins In Diamond Grown By Chemical Vapor Deposition, John S. Colton, T. A. Kennedy, J. E. Butler, R. C. Linares, P.J. Doering Nov 2003

Long Coherence Times At 300 K For Nitrogen-Vacancy Center Spins In Diamond Grown By Chemical Vapor Deposition, John S. Colton, T. A. Kennedy, J. E. Butler, R. C. Linares, P.J. Doering

Faculty Publications

Electron-spin-echo experiments reveal phase-memory times as long as 58 μs at 300 K for nitrogen-vacancy centers in chemical vapor deposition (CVD) single crystals. The spins were optically polarized and optically detected. Two high-quality CVD samples were studied. From the current results, it is not clear whether these phase-memory times represent a fundamental limit or are limited by an external source of decoherence.


Steps Toward The Creation Of A Carbon Nanotube Single Electron Transistor, R. Matthew Ferguson May 2003

Steps Toward The Creation Of A Carbon Nanotube Single Electron Transistor, R. Matthew Ferguson

Pomona Senior Theses

This report details work toward the fabrication of a single-electron transistor created from a single-walled carbon nanotube (SWNT). Specifically discussed is a method for growing carbon nanotubes (CNTs) via carbon vapor deposition (CVD). The growth is catalyzed by a solution of 0.02g Fe(NO3)3·9H2O, 0.005g MoO2(acac)2, and 0.015g of alumina particles in 15mL methanol. SWNT diameter ranges from 0.6 to 3.0 nm. Also discussed is a method to control nanotube growth location by patterning samples with small islands of catalyst. A novel “maskless” photolithographic process is used to focus light from a lightweight commercial digital projector through a microscope. Catalyst islands …


Steps Toward The Creation Of A Carbon Nanotube Single Electron Transistor, R. Matthew Ferguson May 2003

Steps Toward The Creation Of A Carbon Nanotube Single Electron Transistor, R. Matthew Ferguson

Pomona Senior Theses

This report details work toward the fabrication of a single-electron transistor created from a single-walled carbon nanotube (SWNT). Specifically discussed is a method for growing carbon nanotubes (CNTs) via carbon vapor deposition (CVD). The growth is catalyzed by a solution of 0.02g Fe(NO3)3·9H2O, 0.005g MoO2(acac)2, and 0.015g of alumina particles in 15mL methanol. SWNT diameter ranges from 0.6 to 3.0 nm. Also discussed is a method to control nanotube growth location by patterning samples with small islands of catalyst. A novel “maskless” photolithographic process is used to focus light from a lightweight commercial digital projector through a microscope. Catalyst islands …


Pore Structure, Barrier Layer Topography And Matrix Alumina Structure Of Porous Anodic Alumina Film, Yucheng Sui, B.Z. Cui, L. Martinez, R. Perez, David J. Sellmyer Apr 2002

Pore Structure, Barrier Layer Topography And Matrix Alumina Structure Of Porous Anodic Alumina Film, Yucheng Sui, B.Z. Cui, L. Martinez, R. Perez, David J. Sellmyer

David Sellmyer Publications

Different anodic voltages and methods were adopted to produce porous anodic alumina films (PAAF) in an aqueous solution of oxalic acid. Carbon tube growth by chemical vapor deposition (CVD) in the films was used to copy the internal pore structure and was recorded by transmission electron microscopy (TEM) photos. Atomic force microscope (AFM) was employed to obtain the topography of the barrier layer of the corresponding films. When the anodic voltage was 40 V and the two-step method adopted, the barrier layer of the film had domains with highly ordered hexagonal cell distribution, and the corresponding pores were straight. When …


Photoluminescence Study Of Gallium Arsenide, Aluminum Gallium Arsenide, And Gallium Antimonide Thin Films Grown By Metalorganic Chemical Vapor Deposition, John Mark Koons Jan 1994

Photoluminescence Study Of Gallium Arsenide, Aluminum Gallium Arsenide, And Gallium Antimonide Thin Films Grown By Metalorganic Chemical Vapor Deposition, John Mark Koons

Theses

The photoluminescence produced by four MOCVD grown epitaxial thin film samples was studied to give insight into sample quality. The four samples under this study were GaAs on a GaAs substrate, Al.25Ga.75As on a GaAs substrate, Al.30Ga.7OAs on a GaAs substrate, and GaSb on a GaSb substrate. Excitation was achieved through the use of the 514.0 nm line of an argon ion laser, and sample cooling was attained by use of a cryostat cooler using helium gas to attain a low temperature limit of 10°K. The GaAs and Al.30Ga.7O …


Characterization Of Low Pressure Chemical Vapor Deposited Silicon Dioxide Thin Films, Xue Du Jan 1992

Characterization Of Low Pressure Chemical Vapor Deposited Silicon Dioxide Thin Films, Xue Du

Theses

LPCVD deposited amorphous silicon dioxide SiO2 thin films from a new chemical vapor source, diethylsilane (DES), were characterized. This work is focused on evaluation of SiO2 films prepared by varies deposition temperatures and flow rates series.

SiO2 thin films were evaluated for density, porosity, and refractive index. Techniques for evaluation of the above mentioned parameters for this work included the use of infrared absorption spectroscopy, preferential etch procedures, optical measurement of refractive index and thickness, and thermal annealing of CVD films. The densification in vacuum ambient has been carried out at the temperature of 600 °, 750 …