Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Empirical Modeling Of Tilt-Rotor Aerodynamic Performance, Michael C. Stratton Oct 2021

Empirical Modeling Of Tilt-Rotor Aerodynamic Performance, Michael C. Stratton

Mechanical & Aerospace Engineering Theses & Dissertations

There has been increasing interest into the performance of electric vertical takeoff and landing (eVTOL) aircraft. The propellers used for the eVTOL propulsion systems experience a broad range of aerodynamic conditions, not typically experienced by propellers in forward flight, that includes large incidence angles relative to the oncoming airflow. Formal experiment design and analysis techniques featuring response surface methods were applied to a subscale, tilt-rotor wind tunnel test for three, four, five, and six blade, 16-inch diameter, propeller configurations in support of development of the NASA LA-8 aircraft. Investigation of low-speed performance included a maximum speed of 12 m/s and …


A Digital One Degree Of Freedom Model Of An Electromagnetic Position Sensor, Michelle Elizabeth Weinmann Jul 2021

A Digital One Degree Of Freedom Model Of An Electromagnetic Position Sensor, Michelle Elizabeth Weinmann

Mechanical & Aerospace Engineering Theses & Dissertations

The purpose of this project was to improve an existing system currently in use by NASA Langley Research Center (LaRC). The 6-inch Magnetic Suspension and Balance System (MSBS) built at MIT is operational with control in three degrees of freedom, with two additional degrees of freedom exhibiting passive stability. The means for measuring model displacement within the magnetic environment is an Electromagnetic Position Sensor (EPS), consisting of excitation coils at 20 kHz and multiple sets of pickup coils. The pickup coil voltages are proportional to model displacement in each degree of freedom. However, the EPS electronic signal processing system is …


Development And Applications Of Adjoint-Based Aerodynamic And Aeroacoustic Multidisciplinary Optimization For Rotorcraft, Ramiz Omur Icke Jul 2021

Development And Applications Of Adjoint-Based Aerodynamic And Aeroacoustic Multidisciplinary Optimization For Rotorcraft, Ramiz Omur Icke

Mechanical & Aerospace Engineering Theses & Dissertations

Urban Air Mobility (UAM) is one of the most popular proposed solutions for alleviating traffic problems in populated areas. In this context, the proposed types of vehicles mainly consist of rotors and propellers powered by electric motors. However, those rotary-wing components can contribute excessively to noise generation. Therefore, a significant noise concern emerges due to urban air vehicles in or around residential areas. Reducing noise emitted by air vehicles is critically important to improve public acceptance of such vehicles for operations in densely populated areas.

Two main objectives of the present dissertation are: (1) to expand the multidisciplinary optimization to …


A New Method For Estimating The Physical Characteristics Of Martian Dust Devils, Shelly Cahoon Mann Apr 2021

A New Method For Estimating The Physical Characteristics Of Martian Dust Devils, Shelly Cahoon Mann

Mechanical & Aerospace Engineering Theses & Dissertations

Critical to the future exploration of Mars is having a detailed understanding of the atmospheric environment and its potential dangers. The dust devil is one of these potential dangers. The transport of dust through saltation is believed to be the driving mechanism responsible for Martian weather patterns. The two primary mechanisms for dust transport are dust storms and dust devils. Dust devils on Mars are a frequent occurrence with one in five so called giant dust devils being large enough to leave scars on the surface that are visible from space. Due to the thin atmosphere, winds of 60 mph …