Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Old Dominion University

Mechanical & Aerospace Engineering Theses & Dissertations

Discipline
Keyword
Publication Year

Articles 1 - 30 of 50

Full-Text Articles in Physical Sciences and Mathematics

Machine Learning Approach To Activity Categorization In Young Adults Using Biomechanical Metrics, Nathan Q. C. Holland Oct 2023

Machine Learning Approach To Activity Categorization In Young Adults Using Biomechanical Metrics, Nathan Q. C. Holland

Mechanical & Aerospace Engineering Theses & Dissertations

Inactive adults often have decreased musculoskeletal health and increased risk factors for chronic diseases. However, there is limited data linking biomechanical measurements of generally healthy young adults to their physical activity levels assessed through questionnaires. Commonly used data collection methods in biomechanics for assessing musculoskeletal health include but are not limited to muscle quality (measured as echo intensity when using ultrasound), isokinetic (i.e., dynamic) muscle strength, muscle activations, and functional movement assessments using motion capture systems. These assessments can be time consuming for both data collection and processing. Therefore, understanding if all biomechanical assessments are necessary to classify the activity …


Faster, Cheaper, And Better Cfd: A Case For Machine Learning To Augment Reynolds-Averaged Navier-Stokes, John Peter Romano Ii Oct 2023

Faster, Cheaper, And Better Cfd: A Case For Machine Learning To Augment Reynolds-Averaged Navier-Stokes, John Peter Romano Ii

Mechanical & Aerospace Engineering Theses & Dissertations

In recent years, the field of machine learning (ML) has made significant advances, particularly through applying deep learning (DL) algorithms and artificial intelligence (AI). The literature shows several ways that ML may enhance the power of computational fluid dynamics (CFD) to improve its solution accuracy, reduce the needed computational resources and reduce overall simulation cost. ML techniques have also expanded the understanding of underlying flow physics and improved data capture from experimental fluid dynamics.

This dissertation presents an in-depth literature review and discusses ways the field of fluid dynamics has leveraged ML modeling to date. The author selects and describes …


Experimental And Computational Aerodynamic Studies Of Axially-Oriented Low-Fineness-Ratio Cylinders, Forrest Miller Aug 2023

Experimental And Computational Aerodynamic Studies Of Axially-Oriented Low-Fineness-Ratio Cylinders, Forrest Miller

Mechanical & Aerospace Engineering Theses & Dissertations

For the successful completion of atmospheric entry, descent, and landing (EDL) missions, a body geometry must be selected which provides favorable dynamic aerodynamic properties. The types of experimental facilities capable of collecting information on these properties are limited; however, their numbers are growing thanks to the continued work by the aerodynamics community. NASA Langley Research Center (LaRC) is conducting dynamic aerodynamic testing using a subsonic magnetic suspension and balance system (MSBS), with the end goal of implementing a supersonic MSBS facility at NASA Glenn Research Center. MSBSs are also currently used at the Institute of Fluid Science (IFS) at Tohoku …


Study Of Microphonic Effects On The C100 Cryomodule For High Energy Electron Beam Accelerators, Caleb James Hull Aug 2023

Study Of Microphonic Effects On The C100 Cryomodule For High Energy Electron Beam Accelerators, Caleb James Hull

Mechanical & Aerospace Engineering Theses & Dissertations

The Continuous Electron Beam Accelerator Facility (CEBAF) at Thomas Jefferson National Laboratory (JLab) is a particle accelerator which can accelerate an electron beam to relativistic speeds and apply the beam onto target samples. The C100 superconducting radio frequency (SRF) cavity is the primary accelerating structure of the C100 cryomodule, one of the many cryomodules which compose the CEBAF linear accelerator. SRF cavities are particularly sensitive to internal and external vibrations that can result in a phenomenon called microphonics which degrade the operational stability of a cryomodule.

The purpose of this thesis is to investigate the significance of mechanical disturbances on …


A Comparative Study Of Vinti-Based Orbit Propagation And Estimation For Cubesats In Very Low Earth Orbits, Ethan Michael Senecal Aug 2023

A Comparative Study Of Vinti-Based Orbit Propagation And Estimation For Cubesats In Very Low Earth Orbits, Ethan Michael Senecal

Mechanical & Aerospace Engineering Theses & Dissertations

In recent years, there has been a growing interest in CubeSats and very low Earth orbit (VLEO) space missions. Mission SeaLion, a collaborative CubeSat mission between Old Dominion University, the U.S. Coast Guard Academy, and U.S. Air Force Institute of Technology, planned to launch a 3U CubeSat into VLEO. The VLEO mission is a particularly challenging environment for navigation and orbit propagation because drag introduces a significant perturbation for orbit models such as SGP4. Additionally, mission requirements left no capacity for attitude determination or control, further reducing knowledge of drag behavior of the satellite in flight. This deficiency is a …


Fabrication Of Solid Oxide Fuel Cell Components Using Stereolithography 3d Printing, Hannah Dyer May 2023

Fabrication Of Solid Oxide Fuel Cell Components Using Stereolithography 3d Printing, Hannah Dyer

Mechanical & Aerospace Engineering Theses & Dissertations

Transitioning from fossil fuel supplied energy to renewable technology must meet cost efficient parameters throughout the manufacturing process while possessing the characteristics of a functioning and reliable power source. With a significant demand in renewable energy products, developmental techniques require adaptive approaches and procedures for novel materials in the manufacturing phase. This report proposes how a solid oxide fuel cell (SOFC), a renewable energy system, can employ additive manufacturing for directly 3D printing its components by utilizing stereolithography (SLA) 3D printing techniques. Fabrication of the printed components from the mixtures were first mixed with varying concentrations of ceramic powder and …


Numerical Simulation Of Electroosmotic Flow Of Viscoelastic Fluid In Microchannel, Jianyu Ji Dec 2022

Numerical Simulation Of Electroosmotic Flow Of Viscoelastic Fluid In Microchannel, Jianyu Ji

Mechanical & Aerospace Engineering Theses & Dissertations

Electroosmotic flow (EOF) has been widely used in various biochemical microfluidic applications, many of which often involve the use of viscoelastic non-Newtonian fluids. Due to the existence of the elastic effect, the viscoelastic EOF develops into chaotic flow under extremely low Reynolds numbers, which is known as elastic turbulence. The mechanism of elastic turbulence in electroosmotic flow remains unclear. Numerical simulation plays an important role in understanding the mechanisms of elastic turbulence. This dissertation is aimed to study the EOF of viscoelastic fluids in constriction microchannels under various direct current (DC) and alternating current (AC) electric fields. First, the EOF …


A Comparison Of Uniaxial Compressive Response And Inelastic Deformation Mechanisms In Freeze Cast Alumina-Epoxy Composites Without And With Rigid Confinement, Tareq Aljuhari Aug 2022

A Comparison Of Uniaxial Compressive Response And Inelastic Deformation Mechanisms In Freeze Cast Alumina-Epoxy Composites Without And With Rigid Confinement, Tareq Aljuhari

Mechanical & Aerospace Engineering Theses & Dissertations

Cellular ceramics have an array of improved mechanical properties that make them incredibly desired for different applications such as armor systems, aircraft structures, automobiles bumpers, and biomedical implants. It is also desirable that porous architecture could be shaped into bulk complicated shapes and easy to scale-up with low manufacturing cost. Despite several efficient techniques to fabricate cellular ceramics, some limitations are preventing us from meeting the high demand of the after mentioned applications. For that, freeze casting, also called ice-templating, is technique of solidifying an aqueous ceramic suspension under the effect of unidirectional temperature gradient. In this study, Ice-templated porous …


Utilization Of Finite Element Analysis Techniques For Adolescent Idiopathic Scoliosis Surgical Planning, Michael A. Polanco Aug 2022

Utilization Of Finite Element Analysis Techniques For Adolescent Idiopathic Scoliosis Surgical Planning, Michael A. Polanco

Mechanical & Aerospace Engineering Theses & Dissertations

Adolescent Idiopathic Scoliosis, a three-dimensional deformity of the thoracolumbar spine, affects approximately 1-3% of patients ages 10-18. Surgical correction and treatment of the spinal column is a costly and high-risk task that is consistently complicated by factors such as patient-specific spinal deformities, curve flexibility, and surgeon experience. The following dissertation utilizes finite element analysis to develop a cost-effective, building-block approach by which surgical procedures and kinematic evaluations may be investigated. All studies conducted are based off a volumetric, thoracolumbar finite element (FE) model developed from computer-aided design (CAD) anatomy whose components are kinematically validated with in-vitro data. Spinal ligament stiffness …


Deep Learning Object-Based Detection Of Manufacturing Defects In X-Ray Inspection Imaging, Juan C. Parducci May 2022

Deep Learning Object-Based Detection Of Manufacturing Defects In X-Ray Inspection Imaging, Juan C. Parducci

Mechanical & Aerospace Engineering Theses & Dissertations

Current analysis of manufacturing defects in the production of rims and tires via x-ray inspection at an industry partner’s manufacturing plant requires that a quality control specialist visually inspect radiographic images for defects of varying sizes. For each sample, twelve radiographs are taken within 35 seconds. Some defects are very small in size and difficult to see (e.g., pinholes) whereas others are large and easily identifiable. Implementing this quality control practice across all products in its human-effort driven state is not feasible given the time constraint present for analysis.

This study aims to identify and develop an object detector capable …


Development Of Modeling And Simulation Platform For Path-Planning And Control Of Autonomous Underwater Vehicles In Three-Dimensional Spaces, Sai Krishna Abhiram Kondapalli May 2022

Development Of Modeling And Simulation Platform For Path-Planning And Control Of Autonomous Underwater Vehicles In Three-Dimensional Spaces, Sai Krishna Abhiram Kondapalli

Mechanical & Aerospace Engineering Theses & Dissertations

Autonomous underwater vehicles (AUVs) operating in deep sea and littoral environments have diverse applications including marine biology exploration, ocean environment monitoring, search for plane crash sites, inspection of ship-hulls and pipelines, underwater oil rig maintenance, border patrol, etc. Achieving autonomy in underwater vehicles relies on a tight integration between modules of sensing, navigation, decision-making, path-planning, trajectory tracking, and low-level control. This system integration task benefits from testing the related algorithms and techniques in a simulated environment before implementation in a physical test bed. This thesis reports on the development of a modeling and simulation platform that supports the design and …


Electromagnetic Modeling Of A Wind Tunnel Magnetic Suspension And Balance System, Desiree Driver May 2022

Electromagnetic Modeling Of A Wind Tunnel Magnetic Suspension And Balance System, Desiree Driver

Mechanical & Aerospace Engineering Theses & Dissertations

Wind tunnels are used to study forces and moments acting on an aerodynamic body. While most results involve some interference from the mechanical supports used to hold the model, a Magnetic Suspension and Balance System (MSBS) is void of these interferences and presents an ideal test scenario. To further investigate the feasibility of dynamic stability testing at supersonic speeds using a MSBS, a preliminary design idea is currently being developed using an existing MSBS in a subsonic wind tunnel. This review focuses on the development of a mathematical model to more accurately portray the capabilities of the 6 inch Massachusetts …


Empirical Modeling Of Tilt-Rotor Aerodynamic Performance, Michael C. Stratton Oct 2021

Empirical Modeling Of Tilt-Rotor Aerodynamic Performance, Michael C. Stratton

Mechanical & Aerospace Engineering Theses & Dissertations

There has been increasing interest into the performance of electric vertical takeoff and landing (eVTOL) aircraft. The propellers used for the eVTOL propulsion systems experience a broad range of aerodynamic conditions, not typically experienced by propellers in forward flight, that includes large incidence angles relative to the oncoming airflow. Formal experiment design and analysis techniques featuring response surface methods were applied to a subscale, tilt-rotor wind tunnel test for three, four, five, and six blade, 16-inch diameter, propeller configurations in support of development of the NASA LA-8 aircraft. Investigation of low-speed performance included a maximum speed of 12 m/s and …


Development And Applications Of Adjoint-Based Aerodynamic And Aeroacoustic Multidisciplinary Optimization For Rotorcraft, Ramiz Omur Icke Jul 2021

Development And Applications Of Adjoint-Based Aerodynamic And Aeroacoustic Multidisciplinary Optimization For Rotorcraft, Ramiz Omur Icke

Mechanical & Aerospace Engineering Theses & Dissertations

Urban Air Mobility (UAM) is one of the most popular proposed solutions for alleviating traffic problems in populated areas. In this context, the proposed types of vehicles mainly consist of rotors and propellers powered by electric motors. However, those rotary-wing components can contribute excessively to noise generation. Therefore, a significant noise concern emerges due to urban air vehicles in or around residential areas. Reducing noise emitted by air vehicles is critically important to improve public acceptance of such vehicles for operations in densely populated areas.

Two main objectives of the present dissertation are: (1) to expand the multidisciplinary optimization to …


A Digital One Degree Of Freedom Model Of An Electromagnetic Position Sensor, Michelle Elizabeth Weinmann Jul 2021

A Digital One Degree Of Freedom Model Of An Electromagnetic Position Sensor, Michelle Elizabeth Weinmann

Mechanical & Aerospace Engineering Theses & Dissertations

The purpose of this project was to improve an existing system currently in use by NASA Langley Research Center (LaRC). The 6-inch Magnetic Suspension and Balance System (MSBS) built at MIT is operational with control in three degrees of freedom, with two additional degrees of freedom exhibiting passive stability. The means for measuring model displacement within the magnetic environment is an Electromagnetic Position Sensor (EPS), consisting of excitation coils at 20 kHz and multiple sets of pickup coils. The pickup coil voltages are proportional to model displacement in each degree of freedom. However, the EPS electronic signal processing system is …


A New Method For Estimating The Physical Characteristics Of Martian Dust Devils, Shelly Cahoon Mann Apr 2021

A New Method For Estimating The Physical Characteristics Of Martian Dust Devils, Shelly Cahoon Mann

Mechanical & Aerospace Engineering Theses & Dissertations

Critical to the future exploration of Mars is having a detailed understanding of the atmospheric environment and its potential dangers. The dust devil is one of these potential dangers. The transport of dust through saltation is believed to be the driving mechanism responsible for Martian weather patterns. The two primary mechanisms for dust transport are dust storms and dust devils. Dust devils on Mars are a frequent occurrence with one in five so called giant dust devils being large enough to leave scars on the surface that are visible from space. Due to the thin atmosphere, winds of 60 mph …


Onboard Autonomous Controllability Assessment For Fixed Wing Suavs, Brian Edward Duvall Dec 2020

Onboard Autonomous Controllability Assessment For Fixed Wing Suavs, Brian Edward Duvall

Mechanical & Aerospace Engineering Theses & Dissertations

Traditionally fixed-wing small Unmanned Arial Vehicles (sUAV) are flown while in direct line of sight with commands from a remote operator. However, this is changing with the increased popularity and ready availability of low-cost flight controllers. Flight controllers provide fixed-wing sUAVs with functions that either minimize or eliminate the need for a remote operator. Since the remote operator is no longer controlling the sUAV, it is impossible to determine if the fixed-wing sUAV has proper control authority. In this work, a controllability detection system was designed, built, and flight-tested using COTS hardware. The method features in-situ measurement and analysis of …


Conical Orbital Mechanics: A Rework Of Classic Orbit Transfer Mechanics, Cian Anthony Branco Dec 2020

Conical Orbital Mechanics: A Rework Of Classic Orbit Transfer Mechanics, Cian Anthony Branco

Mechanical & Aerospace Engineering Theses & Dissertations

Simple orbital maneuvers obeying Kepler’s Laws, when taken with respect to Newton’s framework, require considerable time and effort to interpret and understand. Instead of a purely mathematical approach relying on the governing relations, a graphical geometric conceptual representation provides a useful alternative to the physical realities of orbits. Conic sections utilized within the full scope of a modified cone (frustum) were employed to demonstrate and develop a geometric approach to elliptical orbit transformations. The geometric model in-question utilizes the rotation of a plane intersecting the orbital frustum at some angle β (and the change in this angle) in a novel …


Rotorcraft Blade Angle Calibration Methods, Brian David Calvert Jr. Apr 2020

Rotorcraft Blade Angle Calibration Methods, Brian David Calvert Jr.

Mechanical & Aerospace Engineering Theses & Dissertations

The most vital system of a rotorcraft is the rotor system due to its effects on the overall flight quality of the vehicle. Therefore, it is of importance to be able to accurately determine blade position during flight so that fine adjustments can be made to ensure a safe and efficient flight. In this study, a current calibration method focusing on the pitch, flap, and lead-lag blade angles is analyzed and found to have larger than acceptable error associated with the sensor calibrations. A literature review is conducted which reveals four novel methods that can potentially increase the accuracy of …


A Cfd Study Of Steady Fully Developed Laminar Flow Through A 90-Degree Bend Pipe With A Square Cross-Sectional Area, Subodh Sushant Toraskar Oct 2019

A Cfd Study Of Steady Fully Developed Laminar Flow Through A 90-Degree Bend Pipe With A Square Cross-Sectional Area, Subodh Sushant Toraskar

Mechanical & Aerospace Engineering Theses & Dissertations

Fluid flow through a closed curved conduit has always been a topic of extensive research, as it has many practical and industrial applications. The flow is generally characterized by a presence of secondary flow, vortical motions and pressure losses for different flow regimes. These observed irregularities may positively or negatively impact the flow. They are beneficial for cases where mixing of fluids is required, usually observed for multiphase flow regimes or detrimental for cases involving particles in the fluid. There are also instances where a particle-laden fluid transported through the curved pipe was directly related to corrosion- erosion related problems. …


Identification And Optimal Linear Tracking Control Of Odu Autonomous Surface Vehicle, Nadeem Khan Jul 2018

Identification And Optimal Linear Tracking Control Of Odu Autonomous Surface Vehicle, Nadeem Khan

Mechanical & Aerospace Engineering Theses & Dissertations

Autonomous surface vehicles (ASVs) are being used for diverse applications of civilian and military importance such as: military reconnaissance, sea patrol, bathymetry, environmental monitoring, and oceanographic research. Currently, these unmanned tasks can accurately be accomplished by ASVs due to recent advancements in computing, sensing, and actuating systems. For this reason, researchers around the world have been taking interest in ASVs for the last decade. Due to the ever-changing surface of water and stochastic disturbances such as wind and tidal currents that greatly affect the path-following ability of ASVs, identification of an accurate model of inherently nonlinear and stochastic ASV system …


Single-Stage, Venturi-Driven Desalination System, Brandon Proetto May 2018

Single-Stage, Venturi-Driven Desalination System, Brandon Proetto

Mechanical & Aerospace Engineering Theses & Dissertations

Water demand is increasing at a rapid pace due to population increase, industrial expansion, and agricultural development. The use of desalination technology to meet the high water demands has increased global online desalination capacity from 47 million m^3/d in 2007 to 92.5 million m^3/d as of June 2017 [49]. Membrane and thermal processes are the two mainstream desalination categories used worldwide for desalination plants. Reverse Osmosis (RO) is the most widely used membrane process and it has become the dominant technology for building desalination plants over recent decades. Thermal distillation, however, has become less and less competitive due to its …


Design And Implementation Of An Artificial Neural Network Controller For Quadrotor Flight In Confined Environment, Ahmed Mekky Apr 2018

Design And Implementation Of An Artificial Neural Network Controller For Quadrotor Flight In Confined Environment, Ahmed Mekky

Mechanical & Aerospace Engineering Theses & Dissertations

Quadrotors offer practical solutions for many applications, such as emergency rescue, surveillance, military operations, videography and many more. For this reason, they have recently attracted the attention of research and industry. Even though they have been intensively studied, quadrotors still suffer from some challenges that limit their use, such as trajectory measurement, attitude estimation, obstacle avoidance, safety precautions, and land cybersecurity. One major problem is flying in a confined environment, such as closed buildings and tunnels, where the aerodynamics around the quadrotor are affected by close proximity objects, which result in tracking performance deterioration, and sometimes instability. To address this …


Offshore Wind Energy: Simulating Local Offshore Wind Turbine, Ian P. Aquino Jan 2018

Offshore Wind Energy: Simulating Local Offshore Wind Turbine, Ian P. Aquino

Mechanical & Aerospace Engineering Theses & Dissertations

Dominion Virginia Energy is looking at the possible creation of an offshore wind plant as a renewable source of electricity to be located off the coast of Virginia Beach. This thesis reports on a computer simulation based on local wind conditions and possible single wind turbine installation.

The National Buoy Data Center keeps records of the local wind conditions gathered in real time and available to the public. These data give a general overview of the wind conditions in Virginia Beach which is used to simulate atmospheric boundary layer (ABL) flow conditions and is subsequently used as input data for …


Computational Methods For Nonlinear Systems Analysis With Applications In Mathematics And Engineering, Geoffrey Kenneth Rose Oct 2017

Computational Methods For Nonlinear Systems Analysis With Applications In Mathematics And Engineering, Geoffrey Kenneth Rose

Mechanical & Aerospace Engineering Theses & Dissertations

An investigation into current methods and new approaches for solving systems of nonlinear equations was performed. Nontraditional methods for implementing arc-length type solvers were developed in search of a more robust capability for solving general systems of nonlinear algebraic equations. Processes for construction of parameterized curves representing the many possible solutions to systems of equations versus finding single or point solutions were established. A procedure based on these methods was then developed to identify static equilibrium states for solutions to multi-body-dynamic systems. This methodology provided for a pictorial of the overall solution to a given system, which demonstrated the possibility …


Secondary Electron Emission From Plasma Processed Accelerating Cavity Grade Niobium, Miloš Bašović Apr 2016

Secondary Electron Emission From Plasma Processed Accelerating Cavity Grade Niobium, Miloš Bašović

Mechanical & Aerospace Engineering Theses & Dissertations

Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier.

Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for higher …


Experimental Analysis Of Turbulent Structures And The Effects Of Non-Equilibrium On An Axial Vortex, Michael P. Thompson Apr 2016

Experimental Analysis Of Turbulent Structures And The Effects Of Non-Equilibrium On An Axial Vortex, Michael P. Thompson

Mechanical & Aerospace Engineering Theses & Dissertations

Examples of the axial vortex include, dust devils, trailing line aircraft wake vortices, and tornadoes. Some of these vortices can prove hazardous to individuals and property. This necessitates that studies be conducted to understand their structure and to attempt to develop mathematical models of the flow physics involved. A wide variety of experimental techniques have been used in the past to study the vortex, with flow visualization and hotwire anemometry being chosen for this experiment. There have been many inadequate mathematical models proposed in the past. The experimental results obtained were compared to the work of Ash, Zardadkhan and Zuckerwar …


Modeling Shock Waves Using Exponential Interpolation Functions With The Least-Squares Finite Element Method, Bradford Scott Smith Jr. Apr 2016

Modeling Shock Waves Using Exponential Interpolation Functions With The Least-Squares Finite Element Method, Bradford Scott Smith Jr.

Mechanical & Aerospace Engineering Theses & Dissertations

The hypothesis of this research is that exponential interpolation functions will approximate fluid properties at shock waves with less error than polynomial interpolation functions. Exponential interpolation functions are derived for the purpose of modeling sharp gradients. General equations for conservation of mass, momentum, and energy for an inviscid flow of a perfect gas are converted to finite element equations using the least-squares method. Boundary conditions and a mesh adaptation scheme are also presented. An oblique shock reflection problem is used as a benchmark to determine whether or not exponential interpolation provides any advantages over Lagrange polynomial interpolation. Using exponential interpolation …


Field Emission Studies Toward Improving The Performance Of Dc High Voltage Photoelectron Guns, Mahzad Bastaninejad Jul 2013

Field Emission Studies Toward Improving The Performance Of Dc High Voltage Photoelectron Guns, Mahzad Bastaninejad

Mechanical & Aerospace Engineering Theses & Dissertations

Field emission is the main mechanism that prevents DC high voltage photoemission electron guns from operating at the very high bias voltages required to produce low emittance beams. Gas conditioning is shown to eliminate field emission from cathode electrodes used inside DC high voltage photoelectron guns. Measurements and simulation results indicate that gas conditioning eliminates field emission from cathode electrodes via two mechanisms: sputtering and implantation, with the benefits of implantation reversed by heating the electrode. The field emission characteristics of 5 stainless steel electrodes varied significantly upon the initial application of voltage but improved to nearly the same level …


Computational Dynamics For The Flexible Multi-Body System, Yu Liu Apr 2013

Computational Dynamics For The Flexible Multi-Body System, Yu Liu

Mechanical & Aerospace Engineering Theses & Dissertations

Research in computational dynamics has tremendously developed in the recent years because of the demand for analysis and simulation of various multi-body systems in the growing bio-medical, mechanical and aerospace industries. These multi-body systems are made of individual bodies that are interconnected via mechanical joints. Mathematically, these joints that connect the bodies can be described as constraint equations imposed upon the motions of the involved free bodies. This process will result in an equation of motion expressed in the form of a differential-algebraic equation (DAE). This is one of the main difficulties when dealing with the multi-body system because these …