Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physical Sciences and Mathematics

Partial Measurements Of Quantum Systems, Jonathan Tyler Monroe May 2021

Partial Measurements Of Quantum Systems, Jonathan Tyler Monroe

Arts & Sciences Electronic Theses and Dissertations

Projective measurement is a commonly used assumption in quantum mechanics. However, advances in quantum measurement techniques allow for partial measurements, which accurately estimate state information while keeping the wavefunction intact. We employ partial measurements to study two phenomena. First, we investigate an uncertainty relation—in the style of Heisenberg’s 1929 thought experiment—which includes partial measurements in addition to projective measurements. We find that a weak partial measurement can decrease the uncertainty between two incompatible (non-commuting) observables. In the second study, we investigate the foundation of irreversible dynamics resulting from partial measurements. We do so by comparing the forward and time-reversed probabilities …


Mutual Interaction Induced Multi-Particle Physics In Qed Systems – Cooperative Spontaneous Emission And Photonic Dimer Enhanced Two-Photon Excitation, Yao Zhou Jan 2021

Mutual Interaction Induced Multi-Particle Physics In Qed Systems – Cooperative Spontaneous Emission And Photonic Dimer Enhanced Two-Photon Excitation, Yao Zhou

McKelvey School of Engineering Theses & Dissertations

In recent years, the study of quantum electrodynamics (QED) in light-matter interactions has discovered various interesting phenomenons that orient many applications. However, due to the ambient entanglement among photons and atoms, few-particle dynamics remains challenging to analyze precisely and limits the progress in several fields. In few-particle systems, different number of atoms interacting with the light field generates drastically different results, even when there is only a single photon involved in the system. The interference between individual atom’s spontaneous emission wavefunctions can cooperatively alter the effective atom-light coupling strength. Depending on the spatial distance between individual of atoms and the …


Measurement, Dissipation, And Quantum Control With Superconducting Circuits, Patrick Harrington May 2020

Measurement, Dissipation, And Quantum Control With Superconducting Circuits, Patrick Harrington

Arts & Sciences Electronic Theses and Dissertations

The interaction between a superconducting circuit and its environment can cause decoherence. However, interactions with an environment are necessary for quantum state preparation and measurement. Through the dynamics of open quantum systems, the environment is a resource to control and readout superconducting circuit states. I present an experimental result demonstrating qubit state stabilization from engineered dissipation with a microwave photonic crystal. In addition, I discuss the statistical arrow of time in the dynamics of continuous quantum measurement. These results demonstrate an interplay between open quantum system dynamics and statistics, which highlights the role of both dissipation and measurement for quantum …


Quantum Nanophotonics: Deterministic Photon-Based Quantum Logic Gate By Exploiting Few-Photon Nonlinearity, Zihao Chen Aug 2019

Quantum Nanophotonics: Deterministic Photon-Based Quantum Logic Gate By Exploiting Few-Photon Nonlinearity, Zihao Chen

McKelvey School of Engineering Theses & Dissertations

Photon-based quantum logic gate has substantial advantages over conventional atom-based designs as a result of a longer coherence time and an inherent compatibility with quantum communication protocol of flying qubits, photons. As a vital logic gate for universal quantum computing, the two-photon controlled-phase gate demands a few-photon nonlinearity, which historically suffers from either an indeterministic nature in the linear optics regime, or a weak nonlinearity within naturally-occurring materials in the nonlinear optics regime. It is intriguing yet challenging to deliver a logic gate design by exploiting a genuine fewphoton nonlinearity. In this dissertation, we study a particular one-dimensional quantum nanophotonic …


Toward Devices For Exploring Pt-Symmetry In Electronic Transport Of Graphene, Michael Carovillano May 2019

Toward Devices For Exploring Pt-Symmetry In Electronic Transport Of Graphene, Michael Carovillano

Senior Honors Papers / Undergraduate Theses

Parity-time symmetry, or PT -symmetry is the principle that in quantum mechanics a non- Hermitian Hamiltonian is capable of returning real eigenstates and real spectra.Recent research has demonstrated real world observation of PT -symmetry in electronics and optics. We aim to expand the regime of observed PT -symmetry through measurement of the electronic transport of graphene devices. Drawing from analogous experiments, we plan to use balanced ohmic resistance acting as both loss and relative gain to induce the required unbroken PT -symmetry regime. This paper analyzes techniques used in fabrication of such devices as well as the basis of the …


Exploring Quantum Dynamics And Thermodynamics In Superconducting Qubits, Mahdi Naghiloo May 2019

Exploring Quantum Dynamics And Thermodynamics In Superconducting Qubits, Mahdi Naghiloo

Arts & Sciences Electronic Theses and Dissertations

Quantum technology has been rapidly growing due to its potential revolutionary applications. In particular, superconducting qubits provide a strong light-matter interaction as required for quantum computation and in principle can be scaled up to a high level of complexity. However, obtaining the full benet of quantum mechanics in superconducting circuits requires a deep understanding of quantum physics in such systems in all aspects. One of the most crucial aspects is the concept of measurement and the dynamics of the quantum systems under the measurement process. This thesis is intended to be a pedagogical introduction to the concept of quantum measurement …


Topics In Pt-Symmetric Quantum Mechanics And Classical Systems, Nima Hassanpour Aug 2018

Topics In Pt-Symmetric Quantum Mechanics And Classical Systems, Nima Hassanpour

Arts & Sciences Electronic Theses and Dissertations

Space-time reflection symmetry, or PT symmetry, first proposed in quantum mechanics by Bender and Boettcher in 1998 [2], has become an active research area in fundamental physics. This dissertation contains several research problems which are more or less related to this field of study. After an introduction on complementary topics for the main projects in Chap.1, we discuss about an idea which is originated from the remarkable paper by Chandrasekar et al in Chap.2. They showed that the (second-order constant-coefficient) classical equation of motion for a damped harmonic oscillator can be derived from a Hamiltonian having one degree of freedom. …


Elements Of The Mathematical Formulation Of Quantum Mechanics, Keunjae Go May 2016

Elements Of The Mathematical Formulation Of Quantum Mechanics, Keunjae Go

Senior Honors Papers / Undergraduate Theses

In this paper, we will explore some of the basic elements of the mathematical formulation of quantum mechanics. In the first section, I will list the motivations for introducing a probability model that is quite different from that of the classical probability theory, but still shares quite a few significant commonalities. Later in the paper, I will discuss the quantum probability theory in detail, while paying a brief attention to some of the axioms (by Birkhoff and von Neumann) that illustrate both the commonalities and differences between classical mechanics and quantum mechanics. This paper will end with a presentation of …


Topological Transitions In A Superconducting Qubit, Arman Guerra Jan 2016

Topological Transitions In A Superconducting Qubit, Arman Guerra

Undergraduate Research Symposium Posters

Topology, as it pertains to quantum objects, has become an important area of research because of recent discoveries of topological phases and insulators in condensed matter physics. It can be used as a tool to accurately describe phenomena in many different quantum systems. I present my study of topology as it relates to two level systems, and experiments to probe the topology of transmon qubits. These simple quantum circuits allow for a high level of control which makes them good candidates to study topological properties and to model more complicated systems. Specifically, topological transitions of the first Chern number arise …


Superfluidity In Neutron Stars, Samuel J. Witte Mar 2013

Superfluidity In Neutron Stars, Samuel J. Witte

Undergraduate Theses—Unrestricted

Nucleon pairing is studied with specific considerations directed toward the possible influence on neutron star cooling. We present an in-depth analysis of BCS theory using realistic nuclear potentials and consider the impact short-range correlations can have on the gap. Gap calculations are incorporated into neutron star cooling simulations and the significance of the 3P2 −3F2 channel in various hadronic cooling models is closely examined. An analysis of the 1S0 gap in neutron matter suggests short-range correlations can drastically alter the magnitude, density range, and temperature dependence of the gap. While the newly constructed 1S0 gap does not significantly alter the …