Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Partial Measurements Of Quantum Systems, Jonathan Tyler Monroe May 2021

Partial Measurements Of Quantum Systems, Jonathan Tyler Monroe

Arts & Sciences Electronic Theses and Dissertations

Projective measurement is a commonly used assumption in quantum mechanics. However, advances in quantum measurement techniques allow for partial measurements, which accurately estimate state information while keeping the wavefunction intact. We employ partial measurements to study two phenomena. First, we investigate an uncertainty relation—in the style of Heisenberg’s 1929 thought experiment—which includes partial measurements in addition to projective measurements. We find that a weak partial measurement can decrease the uncertainty between two incompatible (non-commuting) observables. In the second study, we investigate the foundation of irreversible dynamics resulting from partial measurements. We do so by comparing the forward and time-reversed probabilities …


Mutual Interaction Induced Multi-Particle Physics In Qed Systems – Cooperative Spontaneous Emission And Photonic Dimer Enhanced Two-Photon Excitation, Yao Zhou Jan 2021

Mutual Interaction Induced Multi-Particle Physics In Qed Systems – Cooperative Spontaneous Emission And Photonic Dimer Enhanced Two-Photon Excitation, Yao Zhou

McKelvey School of Engineering Theses & Dissertations

In recent years, the study of quantum electrodynamics (QED) in light-matter interactions has discovered various interesting phenomenons that orient many applications. However, due to the ambient entanglement among photons and atoms, few-particle dynamics remains challenging to analyze precisely and limits the progress in several fields. In few-particle systems, different number of atoms interacting with the light field generates drastically different results, even when there is only a single photon involved in the system. The interference between individual atom’s spontaneous emission wavefunctions can cooperatively alter the effective atom-light coupling strength. Depending on the spatial distance between individual of atoms and the …