Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

2020

Institution
Keyword
Publication
Publication Type

Articles 31 - 60 of 509

Full-Text Articles in Physical Sciences and Mathematics

Enhancing The Visibility Of Vernier Effect In A Tri-Microfiber Coupler Fiber Loop Interferometer For Ultrasensitive Refractive Index And Temperature Sensing, Fangfang Wei, Dejun Liu, Zhe Wang, Zhuochen Wang, Gerald Farrell, Qiang Wu, Gang-Ding Peng, Yuliya Semenova Nov 2020

Enhancing The Visibility Of Vernier Effect In A Tri-Microfiber Coupler Fiber Loop Interferometer For Ultrasensitive Refractive Index And Temperature Sensing, Fangfang Wei, Dejun Liu, Zhe Wang, Zhuochen Wang, Gerald Farrell, Qiang Wu, Gang-Ding Peng, Yuliya Semenova

Articles

In this paper a Vernier effect based sensor is analyzed and demonstrated experimentally in a tri-microfiber coupler (Tri-MFC) and polarization-maintaining fiber (PMF) loop interferometer (Tri-MFC-PMF) to provide ultrasensitive refractive index and temperature sensing. The main novelty of this work is an analysis of parameters of the proposed Tri-MFC-PMF with the objective of determining the conditions leading to a strong Vernier effect. It has been identified by simulation that the Vernier effect is a primary factor in the design of Tri-MFC-PMF loop sensing structure for sensitivity enhancement. It is furthermore demonstrated experimentally that enhancing the visibility of the Vernier spectrum in …


Strain And Stress Relationships For Optical Phonon Modes In Monoclinic Crystals With Β-Ga2O3 As An Example, Rafal Korlacki, Megan Stokey, Alyssa Lynn Mock, Sean Knight, Alexis Papamichail, Vanya Darakchieva, Mathias Schubert Nov 2020

Strain And Stress Relationships For Optical Phonon Modes In Monoclinic Crystals With Β-Ga2O3 As An Example, Rafal Korlacki, Megan Stokey, Alyssa Lynn Mock, Sean Knight, Alexis Papamichail, Vanya Darakchieva, Mathias Schubert

Department of Electrical and Computer Engineering: Faculty Publications

Strain-stress relationships for physical properties are of interest for heteroepitaxial material systems, where strain and stress are inherent due to thermal expansion and lattice mismatch. We report linear perturbation theory strain and stress relationships for optical phonon modes in monoclinic crystals for strain and stress situations which maintain the monoclinic symmetry of the crystal. By using symmetry group analysis and phonon frequencies obtained under various deformation scenarios from density-functional perturbation theory calculations on β-Ga2O3, we obtain four strain and four stress potential parameters for each phonon mode. We demonstrate that these parameters are sufficient to …


Licoo2 As Sulfur Host To Enhance Cathode Volumetric Capacity For Lithium-Sulfur Battery, Lu Wang, Xue-Ping Gao Oct 2020

Licoo2 As Sulfur Host To Enhance Cathode Volumetric Capacity For Lithium-Sulfur Battery, Lu Wang, Xue-Ping Gao

Journal of Electrochemistry

Lithium-sulfur battery is one of the most promising secondary battery systems due to its super high theoretical gravimetric and volumetric energy densities (2600 Wh·kg-1 and 2800 Wh·L-1, respectively). However, the practical volumetric capacity of sulfur cathode is still unsatisfied due to the overuse of low-density host materials, such as carbon nanomaterials. Herein, commercial LiCoO2 with the high tap density of 2.94 g·cm-3 was used as the host material to build high density sulfur-based composite and compact electrode for increasing the volumetric capacity. Obviously, the tap density of the as-prepared S/LiCoO2 composite was 1.90 g·cm-3, larger than that of …


Facile Synthesis Of Nitrogen-Doped Graphene-Like Active Carbon Materials For High Performance Lithium-Sulfur Battery, Quan-Hua Meng, Wen-Wen Deng, Chang-Ming Li Oct 2020

Facile Synthesis Of Nitrogen-Doped Graphene-Like Active Carbon Materials For High Performance Lithium-Sulfur Battery, Quan-Hua Meng, Wen-Wen Deng, Chang-Ming Li

Journal of Electrochemistry

Lithium-sulphur (Li-S) battery is regarded as a promising energy storage device because of its high theoretical capacity. However, the low S utilization and short cycling life limit the commercial applications. In this work, nitrogen-doped graphene-like carbon (NGC) materials were synthesized by simply pyrolyzing and carbonizing the mixture of melamine (C3H6N6) and L-cysteine (C3H7NO2S). The graphene-like structure in NGC effectively buffered the volume change of S during the discharge/charge process and improved the cycling stability. Meanwhile, nitrogen-containing functional groups in NGC facilitated the transportation of ions and suppressed the …


Progress And Prospects On Multifunctional Coating Separators For Lithium-Sulfur Battery, Zhuang-Zhuang Wei, Nan-Xiang Zhang, Feng Wu, Ren-Jie Chen Oct 2020

Progress And Prospects On Multifunctional Coating Separators For Lithium-Sulfur Battery, Zhuang-Zhuang Wei, Nan-Xiang Zhang, Feng Wu, Ren-Jie Chen

Journal of Electrochemistry

The development of advanced energy storage systems is crucial to meet the growing demand for electric vehicles, portable devices and renewable energy storage. Lithium-sulfur (Li-S) batteries, with their advantages of high specific energy, low cost of raw materials and environmental friendliness, are hotspots in the research field of new high performance batteries. However, there are still many problems which hinder the practical applications of lithium-sulfur batteries, such as the shuttle effect of soluble polysulfide intermediates, the growth of lithium dendrites, and the thermal stability and safety of lithium-sulfur batteries during use. The design of multifunctional coating separator is one of …


Electrochemical Engineering Of Carbon Nanodots, Lei Bao, Dai-Wen Pang Oct 2020

Electrochemical Engineering Of Carbon Nanodots, Lei Bao, Dai-Wen Pang

Journal of Electrochemistry

Carbon nanodots (CNDs), as zero-dimensional carbonaceous fluorescent nanomaterials, are valuable add-ons to the current cohorts of fluorescent nanoparticles. The fine control over the size and the surface is the key to gain designated photophysical properties of CNDs as well as empowers CNDs in many applications. Herein, a series of electrochemical strategies to manipulate the size and the surface of CNDs and to identify the surface structures was presented. Accordingly, the understandings on the originals of photoluminescence as well as the pathways of electrochemiluminescence of CNDs were revealed. These studies demonstrated that electrochemical methods were easy to operate, cost-effective and efficient …


Research Progress Of Key Components In Lithium-Sulfur Batteries, Jia-Jia Chen, Quan-Feng Dong Oct 2020

Research Progress Of Key Components In Lithium-Sulfur Batteries, Jia-Jia Chen, Quan-Feng Dong

Journal of Electrochemistry

Due to the much higher theoretical specific capacity and energy density than the ones of traditional lithium ion battery, Li-S batteries have long been at the pinnacle in the realms of high-energy Li-metal batteries. However, the complicated electrochemical reactions on the sulfur cathode and Li anode, induced by the thermodynamic and kinetic behaviors of lithium polysulfides, are the intrinsic bottleneck to realize the full potential of Li-S batteries for practical application. In this review, we firstly discuss the roles, and thermodynamic and kinetic behaviors of polysulfides in the charging and discharging processes of Li-S batteries. Then, the functional design and …


Research Progress Of Sulfur Cathode Catalytic Conversions For Lithium-Sulfur Batteries, Qin-Jun Shao, Jian Chen Oct 2020

Research Progress Of Sulfur Cathode Catalytic Conversions For Lithium-Sulfur Batteries, Qin-Jun Shao, Jian Chen

Journal of Electrochemistry

The electrochemical reduction of sulfur (S) takes place through multistep reactions when S is used as a cathode material. The complete discharge of S to form final product lithium sulfide (Li2S) is a two-electron reaction. The formation of low-order lithium polysulfides (LiPS) needs to overcome certain energy barriers. And the reduction of Li2S2 to Li2S is the rate-limited step. The reaction kinetic of sulfur cathode is the critical key to determine the electrochemical performance of Li-S batteries, such as specific energy, specific power and low temperature performance, etc. Accelerating the rate-limited step kinetics …


A Model For The Anodic Carbonization Of Alkaline Polymer Electrolyte Fuel Cells, Qi-Hao Li, Ying-Ming Wang, Hua-Long Ma, Li Xiao, Gong-Wei Wang, Jun-Tao Lu, Lin Zhuang Oct 2020

A Model For The Anodic Carbonization Of Alkaline Polymer Electrolyte Fuel Cells, Qi-Hao Li, Ying-Ming Wang, Hua-Long Ma, Li Xiao, Gong-Wei Wang, Jun-Tao Lu, Lin Zhuang

Journal of Electrochemistry

The alkaline polymer electrolyte fuel cell (APEFC) has made appreciable progress in recent years but is still suffering performance loss during discharge with air as the oxidant. Several theories have been suggested to interpret the loss. However, efforts are still needed to reach a clear quantitative understanding. Based on the major experimental findings in combination with thermodynamics and kinetics of the reactions involved in the anode, this paper presents a model featuring layered carbonization in the anode and relevant grouped equations. The simulation results generated from the latter are compared with experiments, and possible principles to suppress the performance loss …


Porous-Electrode Theory Of Lithium Ion Battery: Old Paradigm And New Challenge, Xiao-Xiao Wang, Zi-Rui Zhou, Qiang Shan, Zeng-Ming Zhang, Jun Huang, Yu-Wen Liu, Sheng-Li Chen Oct 2020

Porous-Electrode Theory Of Lithium Ion Battery: Old Paradigm And New Challenge, Xiao-Xiao Wang, Zi-Rui Zhou, Qiang Shan, Zeng-Ming Zhang, Jun Huang, Yu-Wen Liu, Sheng-Li Chen

Journal of Electrochemistry

A critical review on the porous electrode theory developed by Newman and his colleagues is presented. We propose several ideas for further development of this theory by analyzing its limitations. The classical Newman theory does not consider ion steric effect in describing ion transport in electrolyte solutions, which can be amended by a newly developed ion-vacancy coupled charge transfer model for ion transport in concentrated solutions. Ion transport in solid particles of active materials is essentially an ion-electron coupled transport process, and its rationality is verified by comparing the calculated and experimental diffusion coefficients of Li + ion in intercalation …


Cybersecurity Strategy Against Cyber Attacks Towards Smart Grids With Pvs, Fangyu Li, Maria Valero, Liang Zhao, Yousef Mahmoud Oct 2020

Cybersecurity Strategy Against Cyber Attacks Towards Smart Grids With Pvs, Fangyu Li, Maria Valero, Liang Zhao, Yousef Mahmoud

KSU Proceedings on Cybersecurity Education, Research and Practice

Cyber attacks threaten the security of distribution power grids, such as smart grids. The emerging renewable energy sources such as photovoltaics (PVs) with power electronics controllers introduce new potential vulnerabilities. Based on the electric waveform data measured by waveform sensors in the smart grids, we propose a novel cyber attack detection and identification approach. Firstly, we analyze the cyber attack impacts (including cyber attacks on the solar inverter causing unusual harmonics) on electric waveforms in distribution power grids. Then, we propose a novel deep learning based mechanism including attack detection and attack diagnosis. By leveraging the electric waveform sensor data …


Hu Aquaponics Monitoring And Control System : European Annual Edunet Conference 2020, Rachel L. Fogle, Glenn P. Williams, Josh R. Krug Oct 2020

Hu Aquaponics Monitoring And Control System : European Annual Edunet Conference 2020, Rachel L. Fogle, Glenn P. Williams, Josh R. Krug

Presidential Research Grants

The functional purpose of the HU Aquaponics Monitoring and Control System Project is to develop an environmental and plant monitoring and control system for the HU Aquaponics Lab, located in the Student Union. The project involves the design and implementation of technology that will regularly take measurements from the environment (e.g., air temperature, water temperature, pH, dissolved oxygen, etc). PLCnext Technology will systematically collect, store, and web-publish the measurement data for HU researchers and the public to use for scientific research.


Integrated Cyberattack Detection And Resilient Control Strategies Using Lyapunov-Based Economic Model Predictive Control, Henrique Oyama, Helen Durand Oct 2020

Integrated Cyberattack Detection And Resilient Control Strategies Using Lyapunov-Based Economic Model Predictive Control, Henrique Oyama, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

The use of an integrated system framework, characterized by numerous cyber/physical components (sensor measurements, signals to actuators) connected through wired/wireless networks, has not only increased the ability to control industrial systems, but also the vulnerabilities to cyberattacks. State measurement cyberattacks could pose threats to process control systems since feedback control may be lost if the attack policy is not thwarted. Motivated by this, we propose three detection concepts based on Lyapunov‐based economic model predictive control (LEMPC) for nonlinear systems. The first approach utilizes randomized modifications to an LEMPC formulation online to potentially detect cyberattacks. The second method detects attacks when …


Gaining Insight Into Solar Photovoltaic Power Generation Forecasting Utilizing Explainable Artificial Intelligence Tools, Murat Kuzlu, Umit Cali, Vinayak Sharma, Özgür Güler Oct 2020

Gaining Insight Into Solar Photovoltaic Power Generation Forecasting Utilizing Explainable Artificial Intelligence Tools, Murat Kuzlu, Umit Cali, Vinayak Sharma, Özgür Güler

Engineering Technology Faculty Publications

Over the last two decades, Artificial Intelligence (AI) approaches have been applied to various applications of the smart grid, such as demand response, predictive maintenance, and load forecasting. However, AI is still considered to be a ‘‘black-box’’ due to its lack of explainability and transparency, especially for something like solar photovoltaic (PV) forecasts that involves many parameters. Explainable Artificial Intelligence (XAI) has become an emerging research field in the smart grid domain since it addresses this gap and helps understand why the AI system made a forecast decision. This article presents several use cases of solar PV energy forecasting using …


Cleanpage: Fast And Clean Document And Whiteboard Capture, Jane Courtney Oct 2020

Cleanpage: Fast And Clean Document And Whiteboard Capture, Jane Courtney

Articles

The move from paper to online is not only necessary for remote working, it is also significantly more sustainable. This trend has seen a rising need for the high-quality digitization of content from pages and whiteboards to sharable online material. However, capturing this information is not always easy nor are the results always satisfactory. Available scanning apps vary in their usability and do not always produce clean results, retaining surface imperfections from the page or whiteboard in their output images. CleanPage, a novel smartphone-based document and whiteboard scanning system, is presented. CleanPage requires one button-tap to capture, identify, crop, and …


Non-Conventional Vehicles As A Way Towards Carbon Neutrality In Iceland, Julia Sokolowska Oct 2020

Non-Conventional Vehicles As A Way Towards Carbon Neutrality In Iceland, Julia Sokolowska

Independent Study Project (ISP) Collection

Paris Agreement’s chief objective is to protect the Earth and its inhabitants from a point of no return, when the effects of climate change will be so intense that they will shift the equilibrium of ecosystems. The distinctiveness of this international environmental treaty is that it does not impose climate change mitigation measures, but rather allows nation states to create their own set of measures, the NDCs, to reach the global warming of ‘well below 2oC’ by the end of the century. Thus, Iceland has submitted its own NDC, the Climate Action Plan 2018-2030, which has an ambitious goal of …


Memory Foreshadow: Memory Forensics Of Hardware Cryptocurrency Wallets – A Tool And Visualization Framework, Tyler Thomas, Mathew Piscitelli, Ilya Shavrov, Ibrahim Baggili Sep 2020

Memory Foreshadow: Memory Forensics Of Hardware Cryptocurrency Wallets – A Tool And Visualization Framework, Tyler Thomas, Mathew Piscitelli, Ilya Shavrov, Ibrahim Baggili

Electrical & Computer Engineering and Computer Science Faculty Publications

We present Memory FORESHADOW: Memory FOREnSics of HArDware cryptOcurrency Wallets. To the best of our knowledge, this is the primary account of cryptocurrency hardware wallet client memory forensics. Our exploratory analysis revealed forensically relevant data in memory including transaction history, extended public keys, passphrases, and unique device identifiers. Data extracted with FORESHADOW can be used to associate a hardware wallet with a computer and allow an observer to deanonymize all past and future transactions due to hierarchical deterministic wallet address derivation. Additionally, our novel visualization framework enabled us to measure both the persistence and integrity of artifacts produced by the …


Exploring The Learning Efficacy Of Digital Forensics Concepts And Bagging & Tagging Of Digital Devices In Immersive Virtual Reality, Courtney Hassenfeldt, Jillian Jacques, Ibrahim Baggili Sep 2020

Exploring The Learning Efficacy Of Digital Forensics Concepts And Bagging & Tagging Of Digital Devices In Immersive Virtual Reality, Courtney Hassenfeldt, Jillian Jacques, Ibrahim Baggili

Electrical & Computer Engineering and Computer Science Faculty Publications

This work presents the first account of evaluating learning inside a VR experience created to teach Digital Forensics (DF) concepts, and a hands-on laboratory exercise in Bagging & Tagging a crime scene with digital devices. First, we designed and developed an immersive VR experience which included a lecture and a lab. Next, we tested it with (n = 57) participants in a controlled experiment where they were randomly assigned to a VR group or a physical group. Both groups were subjected to the same lecture and lab, but one was in VR and the other was in the real world. …


Forecasting Vegetation Health In The Mena Region By Predicting Vegetation Indicators With Machine Learning Models, Sachi Perera, Wenzhao Li, Erik Linstead, Hesham El-Askary Sep 2020

Forecasting Vegetation Health In The Mena Region By Predicting Vegetation Indicators With Machine Learning Models, Sachi Perera, Wenzhao Li, Erik Linstead, Hesham El-Askary

Mathematics, Physics, and Computer Science Faculty Articles and Research

Machine learning (ML) techniques can be applied to predict and monitor drought conditions due to climate change. Predicting future vegetation health indicators (such as EVI, NDVI, and LAI) is one approach to forecast drought events for hotspots (e.g. Middle East and North Africa (MENA) regions). Recently, ML models were implemented to predict EVI values using parameters such as land types, time series, historical vegetation indices, land surface temperature, soil moisture, evapotranspiration etc. In this work, we collected the MODIS atmospherically corrected surface spectral reflectance imagery with multiple vegetation related indices for modeling and evaluation of drought conditions in the MENA …


Single‐Molecule 3d Orientation Imaging Reveals Nanoscale Compositional Heterogeneity In Lipid Membranes, Jin Lu, Hesam Mazidi, Tianben Ding, Oumeng Zhang, Matthew D. Lew Sep 2020

Single‐Molecule 3d Orientation Imaging Reveals Nanoscale Compositional Heterogeneity In Lipid Membranes, Jin Lu, Hesam Mazidi, Tianben Ding, Oumeng Zhang, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

In soft matter, thermal energy causes molecules to continuously translate and rotate, even in crowded environments, thereby impacting the spatial organization and function of most molecular assemblies, such as lipid membranes. Directly measuring the orientation and spatial organization of large collections (>3000 molecules μm−2) of single molecules with nanoscale resolution remains elusive. In this paper, we utilize SMOLM, single‐molecule orientation localization microscopy, to directly measure the orientation spectra (3D orientation plus “wobble”) of lipophilic probes transiently bound to lipid membranes, revealing that Nile red's (NR) orientation spectra are extremely sensitive to membrane chemical composition. SMOLM images resolve …


An Explainable And Statistically Validated Ensemble Clustering Model Applied To The Identification Of Traumatic Brain Injury Subgroups, Dacosta Yeboah, Louis Steinmeister, Daniel B. Hier, Bassam Hadi, Donald C. Wunsch, Gayla R. Olbricht, Tayo Obafemi-Ajayi Sep 2020

An Explainable And Statistically Validated Ensemble Clustering Model Applied To The Identification Of Traumatic Brain Injury Subgroups, Dacosta Yeboah, Louis Steinmeister, Daniel B. Hier, Bassam Hadi, Donald C. Wunsch, Gayla R. Olbricht, Tayo Obafemi-Ajayi

Electrical and Computer Engineering Faculty Research & Creative Works

We present a framework for an explainable and statistically validated ensemble clustering model applied to Traumatic Brain Injury (TBI). The objective of our analysis is to identify patient injury severity subgroups and key phenotypes that delineate these subgroups using varied clinical and computed tomography data. Explainable and statistically-validated models are essential because a data-driven identification of subgroups is an inherently multidisciplinary undertaking. In our case, this procedure yielded six distinct patient subgroups with respect to mechanism of injury, severity of presentation, anatomy, psychometric, and functional outcome. This framework for ensemble cluster analysis fully integrates statistical methods at several stages of …


A Statistical Impulse Response Model Based On Empirical Characterization Of Wireless Underground Channel, Abdul Salam, Mehmet C. Vuran, Suat Irmak Sep 2020

A Statistical Impulse Response Model Based On Empirical Characterization Of Wireless Underground Channel, Abdul Salam, Mehmet C. Vuran, Suat Irmak

Faculty Publications

Wireless underground sensor networks (WUSNs) are becoming ubiquitous in many areas. The design of robust systems requires extensive understanding of the underground (UG) channel characteristics. In this paper, an UG channel impulse response is modeled and validated via extensive experiments in indoor and field testbed settings. The three distinct types of soils are selected with sand and clay contents ranging from $13\%$ to $86\%$ and $3\%$ to $32\%$, respectively. The impacts of changes in soil texture and soil moisture are investigated with more than $1,200$ measurements in a novel UG testbed that allows flexibility in soil moisture control. Moreover, the …


Improving Closely Spaced Dim Object Detection Through Improved Multiframe Blind Deconvolution, Ronald M. Aung Sep 2020

Improving Closely Spaced Dim Object Detection Through Improved Multiframe Blind Deconvolution, Ronald M. Aung

Theses and Dissertations

This dissertation focuses on improving the ability to detect dim stellar objects that are in close proximity to a bright one, through statistical image processing using short exposure images. The goal is to improve the space domain awareness capabilities with the existing infrastructure. Two new algorithms are developed. The first one is through the Neighborhood System Blind Deconvolution where the data functions are separated into the bright object, the neighborhood system, and the background functions. The second one is through the Dimension Reduction Blind Deconvolution, where the object function is represented by the product of two matrices. Both are designed …


Energy And Performance-Optimized Scheduling Of Tasks In Distributed Cloud And Edge Computing Systems, Haitao Yuan Aug 2020

Energy And Performance-Optimized Scheduling Of Tasks In Distributed Cloud And Edge Computing Systems, Haitao Yuan

Dissertations

Infrastructure resources in distributed cloud data centers (CDCs) are shared by heterogeneous applications in a high-performance and cost-effective way. Edge computing has emerged as a new paradigm to provide access to computing capacities in end devices. Yet it suffers from such problems as load imbalance, long scheduling time, and limited power of its edge nodes. Therefore, intelligent task scheduling in CDCs and edge nodes is critically important to construct energy-efficient cloud and edge computing systems. Current approaches cannot smartly minimize the total cost of CDCs, maximize their profit and improve quality of service (QoS) of tasks because of aperiodic arrival …


High Wind Alerts: A System Created With Observations From The X-Band Teaching And Research Radar, Lauren Warner Aug 2020

High Wind Alerts: A System Created With Observations From The X-Band Teaching And Research Radar, Lauren Warner

The Journal of Purdue Undergraduate Research

Following the August 13, 2011, Indiana State Fair stage collapse tragedy, caused by a wind gust from an approaching thunderstorm, Purdue University enforced a wind speed restriction of 30 mph (13 m s-1) for tents at outdoor events. During these events, volunteers stand outside with handheld anemometers, measuring and reporting when the wind speeds exceed this limit. In this study, we report testing of a new system to automate high-wind alerts based on observations from a Doppler radar, the X-band Teaching and Research Radar (XTRRA), near Purdue’s campus. XTRRA scans over campus at low elevations approximately every 5 minutes. Using …


A Review Of Electrochemical Energy Storage Researches In The Past 22 Years, Yu-Sheng Yang Aug 2020

A Review Of Electrochemical Energy Storage Researches In The Past 22 Years, Yu-Sheng Yang

Journal of Electrochemistry

In this paper, research activities from my groups in the field of electrochemical energy storage are reviewed for the past 22 years, which is divided into three sections. The first section describes the researches related to high specific energy and high specific power energy storage devices, including lithium sulfur batteriies (sulfur composite cathode material, lithium sulfur battery fabrication, lithium boron alloy as lithium sulfur battery anodes, and sulfur lithium-ion battery new system), supercapacitors (super activated carbon, capacitive carbon prepared from phenolic resin, carbon nanotube array parasitic pseudo-capacitive energy storage materials, necessary properties of capacitive carbons, nickel hydroxide xerogels pseudo-capacitive energy …


Fuel Cell Performance Of Non-Precious Metal Based Electrocatalysts, Yan-Feng Zhang, Fei Xiao, Guang-Yu Chen, Min-Hua Shao Aug 2020

Fuel Cell Performance Of Non-Precious Metal Based Electrocatalysts, Yan-Feng Zhang, Fei Xiao, Guang-Yu Chen, Min-Hua Shao

Journal of Electrochemistry

The commercialization of proton exchange membrane fuel cells (PEMFCs) is hindered by high cost and low durability of Pt based electrocatalysts. Developing efficient and durable non-precious metal catalysts is a promising approach to addressing these conundrums. Among them, transition metals dispersed in a nitrogen (N)-doped carbon support (M-N-C) show good oxygen reduction reaction activity. This article reviews recent progress in M-N-C catalysts development, focusing on the catalysts design, membrane electrode assembly fabrication, fuel cell performance, and durability testing. Template-assisted approach is an efficient way to synthesize M-N-C materials with homogeneously dispersed single atom active site and reduced metal particles, carbides …


Electrochemical Carbon Dioxide Reduction In Flow Cells, Jia Fan, Na Han, Yan-Guang Li Aug 2020

Electrochemical Carbon Dioxide Reduction In Flow Cells, Jia Fan, Na Han, Yan-Guang Li

Journal of Electrochemistry

Electrochemical carbon dioxide reduction (CO2RR) is an appealing approach to convert atmospheric CO2 to value-added fuels and industrial chemicals, and may play an important role during the transition to a carbon-neutral economy. In order to make this technology commercially viable, it is essential to pursue CO2RR in flow reactors instead of conventional H-type reactors, and to combine electrocatalyst development with system engineering. In this review, we overview the cell configurations and performance advantages of the two types of flow reactors, analyze their shortcomings, and discuss the effects of their different components including gas diffusion electrode …


Recent Progress In Bifunctional Catalysts For Zinc-Air Batteries, Neng-Neng Xu, Jin-Li Qiao Aug 2020

Recent Progress In Bifunctional Catalysts For Zinc-Air Batteries, Neng-Neng Xu, Jin-Li Qiao

Journal of Electrochemistry

Zinc-air battery has attracted great attention from researchers due to its high energy density and power density, which is expected to be widely used in energy conversion and storage. Air electrode as the core area of oxygen catalytic reaction is the focus of the entire zinc-air battery research. Recently, many research achievements have been made in non-noble metal bifunctional catalysts/electrodes with high activity, low cost and abundant species. In this review, we mainly focus on the reaction mechanism and the recent progress in non-noble metal oxide catalyst, carbon-based catalyst, and carbon-based transition metal compound composite and self-supporting electrode. In addition, …


Research Progress Of Metal-Nitrogen-Carbon Catalysts Toward Oxygen Reduction Reaction Inm Changchun Institute Of Applied Chemistry, Ming-Jun Xu, Jie Liu, Jun-Jie Ge, Chang-Peng Liu, Wei Xing Aug 2020

Research Progress Of Metal-Nitrogen-Carbon Catalysts Toward Oxygen Reduction Reaction Inm Changchun Institute Of Applied Chemistry, Ming-Jun Xu, Jie Liu, Jun-Jie Ge, Chang-Peng Liu, Wei Xing

Journal of Electrochemistry

The development of highly active and stable catalysts toward oxygen reduction reaction (ORR) has been facing severe challenges. In recent years, pyrolytic M-N-C catalysts and metal-organic framework derived materials made the performance of non-noble metal catalysts greatly improved, however, the molecular and atomic level understanding in the reaction active sites and the mechanism are still lacking. Here, we summarize the recent research progress made in the Changchun Institute of Applied Chemistry. We present a microporous metal-organic-framework confined strategy toward the preferable formation of ORR catalysts. Firstly, we studied the active site and proposed a new active site structure for the …