Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Series

Institution
Keyword
Publication Year
Publication
File Type

Articles 61 - 90 of 1765

Full-Text Articles in Physical Sciences and Mathematics

Electromagnetic Theory And Applications, Nicholas Madamopoulos, George Kliros Jan 2023

Electromagnetic Theory And Applications, Nicholas Madamopoulos, George Kliros

Open Educational Resources

This book intends to provide both the fundamentals of Electromagnetics but also some practical applications of the concepts covered. Having taught electromagnetics for several years, the authors feel that many times the field of electromagnetics comes as “old” and often times students do not appreciate the concepts and their importance in everyday applications. The authors intend to accompany the EM concepts with life applications. Hence, students may see the direct impact of the knowledge they acquire through the study of the field of electromagnetics and better appreciate the field.


Scheduling Electric Vehicle Charging For Grid Load Balancing, Zhixin Han, Katarina Grolinger, Miriam Capretz, Syed Mir Jan 2023

Scheduling Electric Vehicle Charging For Grid Load Balancing, Zhixin Han, Katarina Grolinger, Miriam Capretz, Syed Mir

Electrical and Computer Engineering Publications

In recent years, electric vehicles (EVs) have been widely adopted because of their environmental benefits. However, the increasing volume of EVs poses capacity issues for grid operators as simultaneously charging many EVs may result in grid instabilities. Scheduling EV charging for grid load balancing has a potential to prevent load peaks caused by simultaneous EV charging and contribute to balance of supply and demand. This paper proposes a user-preference-based scheduling approach to minimize costs for the user while balancing grid loads. The EV owners benefit by charging when the electricity cost is lower, but still within the user-defined preferred charging …


Mitigating Anomalous Electricity Consumption In Smart Cities Using An Ai-Based Stacked-Generalization Technique, Arshid Ali, Laiq Khan, Nadeem Javaid, Safdar Hussain Bouk, Abdulaziz Aldegheishem, Nabil Alrahjeh Jan 2023

Mitigating Anomalous Electricity Consumption In Smart Cities Using An Ai-Based Stacked-Generalization Technique, Arshid Ali, Laiq Khan, Nadeem Javaid, Safdar Hussain Bouk, Abdulaziz Aldegheishem, Nabil Alrahjeh

Computer Science Faculty Publications

Energy management and efficient asset utilization play an important role in the economic development of a country. The electricity produced at the power station faces two types of losses from the generation point to the end user. These losses are technical losses (TL) and non-technical losses (NTL). TLs occurs due to the use of inefficient equipment. While NTLs occur due to the anomalous consumption of electricity by the customers, which happens in many ways; energy theft being one of them. Energy theft majorly happens to cut down on the electricity bills. These losses in the smart grid (SG) are the …


Lifelong Learning-Based Multilayer Neural Network Control Of Nonlinear Continuous-Time Strict-Feedback Systems, Irfan Ahmad Ganie, S. (Sarangapani) Jagannathan Jan 2023

Lifelong Learning-Based Multilayer Neural Network Control Of Nonlinear Continuous-Time Strict-Feedback Systems, Irfan Ahmad Ganie, S. (Sarangapani) Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

In This Paper, We Investigate Lifelong Learning (LL)-Based Tracking Control for Partially Uncertain Strict Feedback Nonlinear Systems with State Constraints, employing a Singular Value Decomposition (SVD) of the Multilayer Neural Networks (MNNs) Activation Function based Weight Tuning Scheme. the Novel SVD-Based Approach Extends the MNN Weight Tuning to (Formula Presented.) Layers. a Unique Online LL Method, based on Tracking Error, is Integrated into the MNN Weight Update Laws to Counteract Catastrophic Forgetting. to Adeptly Address Constraints for Safety Assurances, Taking into Account the Effects Caused by Disturbances, We Utilize a Time-Varying Barrier Lyapunov Function (TBLF) that Ensures a Uniformly Ultimately …


Optimal Tracking Of Nonlinear Discrete-Time Systems Using Zero-Sum Game Formulation And Hybrid Learning, Behzad Farzanegan, S. (Sarangapani) Jagannathan Jan 2023

Optimal Tracking Of Nonlinear Discrete-Time Systems Using Zero-Sum Game Formulation And Hybrid Learning, Behzad Farzanegan, S. (Sarangapani) Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents a novel hybrid learning-based optimal tracking method to address zero-sum game problems for partially uncertain nonlinear discrete-time systems. An augmented system and its associated discounted cost function are defined to address optimal tracking. Three multi-layer neural networks (NNs) are utilized to approximate the optimal control and the worst-case disturbance inputs, and the value function. The critic weights are tuned using the hybrid technique, whose weights are updated once at the sampling instants and in an iterative manner over finite times within the sampling instants. The proposed hybrid technique helps accelerate the convergence of the approximated value functional …


Lifelong Deep Learning-Based Control Of Robot Manipulators, Irfan Ganie, Jagannathan Sarangapani Jan 2023

Lifelong Deep Learning-Based Control Of Robot Manipulators, Irfan Ganie, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

This study proposes a lifelong deep learning control scheme for robotic manipulators with bounded disturbances. This scheme involves the use of an online tunable deep neural network (DNN) to approximate the unknown nonlinear dynamics of the robot. The control scheme is developed by using a singular value decomposition-based direct tracking error-driven approach, which is utilized to derive the weight update laws for the DNN. To avoid catastrophic forgetting in multi-task scenarios and to ensure lifelong learning (LL), a novel online LL scheme based on elastic weight consolidation is included in the DNN weight-tuning laws. Our results demonstrate that the resulting …


Towards Robust Consensus For Intelligent Decision-Making In Iot Blockchain Networks, Charles Rawlins, S. (Sarangapani) Jagannathan Jan 2023

Towards Robust Consensus For Intelligent Decision-Making In Iot Blockchain Networks, Charles Rawlins, S. (Sarangapani) Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

Distributed consensus is the core aspect of blockchain protocol security design. Recent protocols like IOTA have improved concurrency and scalability over Proof-of-work (PoW) with Bitcoin but have core design decisions that are inefficient for limited devices and do not take advantage of previous network experience to reduce calculations. This work proposes the first blockchain consensus protocol based on active machine-learning decisions, called Proof-of-history (PoH). PoH is setup as a distributed reinforcement-learning task for monitoring classification and training of blockchain transactions with an inner deep classifier. Early theoretical analysis and simulations show that PoH is robust to uncoordinated byzantine attacks through …


The Effect Of The Width Of The Incident Pulse To The Dielectric Transition Layer In The Scattering Of An Electromagnetic Pulse — A Qubit Lattice Algorithm Simulation, George Vahala, Linda Vahala, Abhay K. Ram, Min Soe Jan 2023

The Effect Of The Width Of The Incident Pulse To The Dielectric Transition Layer In The Scattering Of An Electromagnetic Pulse — A Qubit Lattice Algorithm Simulation, George Vahala, Linda Vahala, Abhay K. Ram, Min Soe

Electrical & Computer Engineering Faculty Publications

The effect of the thickness of the dielectric boundary layer that connects a material of refractive index n1 to another of index n2is considered for the propagation of an electromagnetic pulse. A qubit lattice algorithm (QLA), which consists of a specially chosen non-commuting sequence of collision and streaming operators acting on a basis set of qubits, is theoretically determined that recovers the Maxwell equations to second-order in a small parameter ϵ. For very thin boundary layer the scattering properties of the pulse mimics that found from the Fresnel jump conditions for a plane wave - except that …


Social-Engineering, Bio-Economies, And Nation-State Ontological Security: A Commentary, Brandon Griffin, Keitavius Alexander, Xavier-Lewis Palmer, Lucas Potter Jan 2023

Social-Engineering, Bio-Economies, And Nation-State Ontological Security: A Commentary, Brandon Griffin, Keitavius Alexander, Xavier-Lewis Palmer, Lucas Potter

Electrical & Computer Engineering Faculty Publications

Biocybersecurity is an evolving discipline that aims to identify the gaps and risks associated with the convergence of Biology (the science of life and living organisms) and cybersecurity (the science, study, and theory of cyberspace and cybernetics) to protect the bioeconomy. The biological industries’ increased reliance on digitization, automation, and computing power has resulted in benefits for the scientific community, it has simultaneously multiplied the risk factors associated with industrial espionage and the protection of data both commercial and proprietary. The sensitive and potentially destructive power of this data and its access inherently poses a risk to the national and …


Impact Of Atmospheric Correction On Classification And Quantification Of Seagrass Density From Worldview-2 Imagery, Victoria J. Hill, Richard C. Zimmerman, Paul Bissett, David Kohler, Blake Schaeffer, Megan Coffer, Jiang Li, Kazi Aminul Islam Jan 2023

Impact Of Atmospheric Correction On Classification And Quantification Of Seagrass Density From Worldview-2 Imagery, Victoria J. Hill, Richard C. Zimmerman, Paul Bissett, David Kohler, Blake Schaeffer, Megan Coffer, Jiang Li, Kazi Aminul Islam

OES Faculty Publications

Mapping the seagrass distribution and density in the underwater landscape can improve global Blue Carbon estimates. However, atmospheric absorption and scattering introduce errors in space-based sensors’ retrieval of sea surface reflectance, affecting seagrass presence, density, and above-ground carbon (AGCseagrass) estimates. This study assessed atmospheric correction’s impact on mapping seagrass using WorldView-2 satellite imagery from Saint Joseph Bay, Saint George Sound, and Keaton Beach in Florida, USA. Coincident in situ measurements of water-leaving radiance (Lw), optical properties, and seagrass leaf area index (LAI) were collected. Seagrass classification and the retrieval of LAI were compared after empirical line …


Personalizing Student Graduation Paths Using Expressed Student Interests, Nicolas Dobbins, Ali R. Hurson, Sahra Sedigh Jan 2023

Personalizing Student Graduation Paths Using Expressed Student Interests, Nicolas Dobbins, Ali R. Hurson, Sahra Sedigh

Electrical and Computer Engineering Faculty Research & Creative Works

This paper proposes an intelligent recommendation approach to facilitate personalized education and help students in planning their path to graduation. The goal is to identify a path that aligns with a student's interests and career goals and approaches optimality with respect to one or more criteria, such as time-to-graduation or credit hours taken. The approach is illustrated and verified through application to undergraduate curricula at the Missouri University of Science and Technology.


Continual Learning-Based Optimal Output Tracking Of Nonlinear Discrete-Time Systems With Constraints: Application To Safe Cargo Transfer, Behzad Farzanegan, S. (Sarangapani) Jagannathan Jan 2023

Continual Learning-Based Optimal Output Tracking Of Nonlinear Discrete-Time Systems With Constraints: Application To Safe Cargo Transfer, Behzad Farzanegan, S. (Sarangapani) Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

This Paper Addresses a Novel Lifelong Learning (LL)-Based Optimal Output Tracking Control of Uncertain Non-Linear Affine Discrete-Time Systems (DT) with State Constraints. First, to Deal with Optimal Tracking and Reduce the Steady State Error, a Novel Augmented System, Including Tracking Error and its Integral Value and Desired Trajectory, is Proposed. to Guarantee Safety, an Asymmetric Barrier Function (BF) is Incorporated into the Utility Function to Keep the Tracking Error in a Safe Region. Then, an Adaptive Neural Network (NN) Observer is Employed to Estimate the State Vector and the Control Input Matrix of the Uncertain Nonlinear System. Next, an NN-Based …


Blockchain And Puf-Based Secure Key Establishment Protocol For Cross-Domain Digital Twins In Industrial Internet Of Things Architecture, Khalid Mahmood, Salman Shamshad, Muhammad Asad Saleem, Rupak Kharel, Ashok Kumar Das, Sachin Shetty, Joel J. P. C. Rodrigues Jan 2023

Blockchain And Puf-Based Secure Key Establishment Protocol For Cross-Domain Digital Twins In Industrial Internet Of Things Architecture, Khalid Mahmood, Salman Shamshad, Muhammad Asad Saleem, Rupak Kharel, Ashok Kumar Das, Sachin Shetty, Joel J. P. C. Rodrigues

VMASC Publications

Introduction:: The Industrial Internet of Things (IIoT) is a technology that connects devices to collect data and conduct in-depth analysis to provide value-added services to industries. The integration of the physical and digital domains is crucial for unlocking the full potential of the IIoT, and digital twins can facilitate this integration by providing a virtual representation of real-world entities.

Objectives:: By combining digital twins with the IIoT, industries can simulate, predict, and control physical behaviors, enabling them to achieve broader value and support industry 4.0 and 5.0. Constituents of cooperative IIoT domains tend to interact and collaborate during their complicated …


Teaching Data Acquisition Through The Arduino-Driven Home Weather Station Project, Sheryl Dutton, Kurt Galderisi, Murat Kuzlu, Otilia Popescu, Vukica Jovanovic Jan 2023

Teaching Data Acquisition Through The Arduino-Driven Home Weather Station Project, Sheryl Dutton, Kurt Galderisi, Murat Kuzlu, Otilia Popescu, Vukica Jovanovic

Engineering Technology Faculty Publications

The main objective of this paper is to present one possible way to engage undergraduate students in designing a system that uses the Internet of Things (IoT) strategy for data acquisition and management. The MATLAB home weather station project presented here was developed by a team of students for the senior design course in the Electrical Engineering Technology undergraduate program at Old Dominion University (ODU). The main purpose of this project was for undergraduate students to learn how to create a localized, compact, and precise weather station. Utilizing various sensors, both homemade and sourced online, this weather station is capable …


Cooperative Deep Q -Learning Framework For Environments Providing Image Feedback, Krishnan Raghavan, Vignesh Narayanan, Sarangapani Jagannathan Jan 2023

Cooperative Deep Q -Learning Framework For Environments Providing Image Feedback, Krishnan Raghavan, Vignesh Narayanan, Sarangapani Jagannathan

Publications

In this article, we address two key challenges in deep reinforcement learning (DRL) setting, sample inefficiency, and slow learning, with a dual-neural network (NN)-driven learning approach. In the proposed approach, we use two deep NNs with independent initialization to robustly approximate the action-value function in the presence of image inputs. In particular, we develop a temporal difference (TD) error-driven learning (EDL) approach, where we introduce a set of linear transformations of the TD error to directly update the parameters of each layer in the deep NN. We demonstrate theoretically that the cost minimized by the EDL regime is an approximation …


Gamelan Gong Directivity Dataset, Samuel D. Bellows, Dallin T. Harwood, Kent L. Gee, Micah R. Shepherd Jan 2023

Gamelan Gong Directivity Dataset, Samuel D. Bellows, Dallin T. Harwood, Kent L. Gee, Micah R. Shepherd

Directivity

No abstract provided.


Accelerating A Software Defined Satnav Receiver Using Multiple Parallel Processing Schemes, Logan Reich, Sanjeev Gunawardena, Michael Braasch Jan 2023

Accelerating A Software Defined Satnav Receiver Using Multiple Parallel Processing Schemes, Logan Reich, Sanjeev Gunawardena, Michael Braasch

Faculty Publications

Excerpt: Satnav SDRs present many benefits in terms of flexibility and configurability. However, due to the high bandwidth signals involved in satnav SDR processing, the software must be highly optimized for the host platform in order to achieve acceptable runtimes. Modules such as sample decoding, carrier replica generation, carrier wipeoff, and correlation are computationally intensive components that benefit from accelerations.


Perceptual Anthropomorphic Walking Robot Platform For Navigation In Unstructured And Undifferentiated Environments, Luige Vladareanu, Mihai Rădulescu, Marius Pandelea, Hongbo Wang, Florentin Smarandache, Yongfei Feng, Ionel-Alexandru Gal, Alexandra C. Ciocîrlan Jan 2023

Perceptual Anthropomorphic Walking Robot Platform For Navigation In Unstructured And Undifferentiated Environments, Luige Vladareanu, Mihai Rădulescu, Marius Pandelea, Hongbo Wang, Florentin Smarandache, Yongfei Feng, Ionel-Alexandru Gal, Alexandra C. Ciocîrlan

Branch Mathematics and Statistics Faculty and Staff Publications

This scientific presentation studies the VIPRO Platform for control of Anthropomorphic Walking Robots (AWR), the architecture control system of the SiMeLA MP robot motion, and shows several experimental results.


Dfhic: A Dilated Full Convolution Model To Enhance The Resolution Of Hi-C Data, Bin Wang, Kun Liu, Yaohang Li, Jianxin Wang Jan 2023

Dfhic: A Dilated Full Convolution Model To Enhance The Resolution Of Hi-C Data, Bin Wang, Kun Liu, Yaohang Li, Jianxin Wang

Computer Science Faculty Publications

Motivation: Hi-C technology has been the most widely used chromosome conformation capture(3C) experiment that measures the frequency of all paired interactions in the entire genome, which is a powerful tool for studying the 3D structure of the genome. The fineness of the constructed genome structure depends on the resolution of Hi-C data. However, due to the fact that high-resolution Hi-C data require deep sequencing and thus high experimental cost, most available Hi-C data are in low-resolution. Hence, it is essential to enhance the quality of Hi-C data by developing the effective computational methods.

Results: In this work, we propose …


Synthetic Heart Sound Dataset, Davoud Shariat Panah, Andrew Hines, Susan Mckeever Jan 2023

Synthetic Heart Sound Dataset, Davoud Shariat Panah, Andrew Hines, Susan Mckeever

Datasets

The repository contains synthetic heart sound recordings. The publication related to this dataset is "Exploring the impact of noise and degradations on heart sound classification models", Biomedical Signal Processing and Control journal.


Securing The Transportation Of Tomorrow: Enabling Self-Healing Intelligent Transportation, Elanor Jackson, Sahra Sedigh Sarvestani Jan 2023

Securing The Transportation Of Tomorrow: Enabling Self-Healing Intelligent Transportation, Elanor Jackson, Sahra Sedigh Sarvestani

Electrical and Computer Engineering Faculty Research & Creative Works

The safety of autonomous vehicles relies on dependable and secure infrastructure for intelligent transportation. The doctoral research described in this paper aims to enable self-healing and survivability of the intelligent transportation systems required for autonomous vehicles (AV-ITS). The proposed approach is comprised of four major elements: qualitative and quantitative modeling of the AV-ITS, stochastic analysis to capture and quantify interdependencies, mitigation of disruptions, and validation of efficacy of the self-healing process. This paper describes the overall methodology and presents preliminary results, including an agent-based model for detection of and recovery from disruptions to the AV-ITS.


Rafid: A Lightweight Approach To Radio Frequency Interference Detection In Time Domain Using Lstm And Statistical Analysis, Luke A. Smith, Vishesh Kumar Tanwar, Maciej Jan Zawodniok, Sanjay Kumar Madria Jan 2023

Rafid: A Lightweight Approach To Radio Frequency Interference Detection In Time Domain Using Lstm And Statistical Analysis, Luke A. Smith, Vishesh Kumar Tanwar, Maciej Jan Zawodniok, Sanjay Kumar Madria

Electrical and Computer Engineering Faculty Research & Creative Works

Recently, the utilization of Radio Frequency (RF) devices has increased exponentially over numerous vertical platforms. This rise has led to an abundance of Radio Frequency Interference (RFI) continues to plague RF systems today. The continued crowding of the RF spectrum makes RFI efficient and lightweight mitigation critical. Detecting and localizing the interfering signals is the foremost step for mitigating RFI concerns. Addressing these challenges, we propose a novel and lightweight approach, namely RaFID, to detect and locate the RFI by incorporating deep neural networks (DNNs) and statistical analysis via batch-wise mean aggregation and standard deviation (SD) calculations. RaFID investigates the …


Towards The Development Of A Blockchain System For Philippine Government Processes For Enhanced Transparency And Verifiability, Karlo Angelo F. Cabugwang, Raphael Christen K. Enriquez, Bienvenido E. Villabroza, Christian E. Pulmano Jan 2023

Towards The Development Of A Blockchain System For Philippine Government Processes For Enhanced Transparency And Verifiability, Karlo Angelo F. Cabugwang, Raphael Christen K. Enriquez, Bienvenido E. Villabroza, Christian E. Pulmano

Department of Information Systems & Computer Science Faculty Publications

There are cases of corruption and fraud within the Philippine government that have gone under the radar, often due to a lack of transparency and verifiability. The objective of this study is to prototype a blockchain network that can run a government process as a decentralized application such that it can enhance transparency and verifiability in the public sector. This can be accomplished by identifying a government process that would be converted into a decentralized application. One of these processes would be converted into a decentralized application. Afterwards, a blockchain framework should be identified one which can create a public …


Defending Ai-Based Automatic Modulation Recognition Models Against Adversarial Attacks, Haolin Tang, Ferhat Ozgur Catak, Murat Kuzlu, Evren Catak, Yanxiao Zhao Jan 2023

Defending Ai-Based Automatic Modulation Recognition Models Against Adversarial Attacks, Haolin Tang, Ferhat Ozgur Catak, Murat Kuzlu, Evren Catak, Yanxiao Zhao

Engineering Technology Faculty Publications

Automatic Modulation Recognition (AMR) is one of the critical steps in the signal processing chain of wireless networks, which can significantly improve communication performance. AMR detects the modulation scheme of the received signal without any prior information. Recently, many Artificial Intelligence (AI) based AMR methods have been proposed, inspired by the considerable progress of AI methods in various fields. On the one hand, AI-based AMR methods can outperform traditional methods in terms of accuracy and efficiency. On the other hand, they are susceptible to new types of cyberattacks, such as model poisoning or adversarial attacks. This paper explores the vulnerabilities …


Development Of Sensing And Programming Activities For Engineering Technology Pathways Using A Virtual Arduino Simulation Platform, Murat Kuzlu, Vukica Jovanovic, Otilia Popescu, Salih Sarp Jan 2023

Development Of Sensing And Programming Activities For Engineering Technology Pathways Using A Virtual Arduino Simulation Platform, Murat Kuzlu, Vukica Jovanovic, Otilia Popescu, Salih Sarp

Engineering Technology Faculty Publications

The Arduino platform has long been an efficient tool in teaching electrical engineering technology, electrical engineering, and computer science concepts in schools and universities and introducing new learners to programming and microcontrollers. Numerous Arduino projects are widely available through the open-source community, and they can help students to have hands-on experience in building circuits and programming electronics with a wide variety of topics that can make learning electrical prototyping fun. The educational fields of electrical engineering and electrical engineering technology need continuous updating to keep up with the continuous evolution of the computer system. Although the traditional Arduino platform has …


Development Of A Simevents Model For Printed Circuit Board (Pcb) Assembly Processes, Siqin Dong, Mileta Tomovic, Krishnanand Kaipa Jan 2023

Development Of A Simevents Model For Printed Circuit Board (Pcb) Assembly Processes, Siqin Dong, Mileta Tomovic, Krishnanand Kaipa

Engineering Technology Faculty Publications

Printed circuit boards (PCBs) are the foundational building blocks of most modern electronic devices. PCB assembly is defined as the process of mounting different electronic components on a PCB. Circuit board assembly utilizes an automated technique with most steps completed by machines for different operations (e.g., pick-and-place components, soldering, etc.). In this paper, details of a student course project, carried out at Old Dominion University, on the design and simulation of PCB assembly processes based on MATLAB discrete-event system are presented. An essential component in the advanced manufacturing technology course is the hands-on experience where students implement multiple software simulation …


A Review Of Piezoelectric Footwear Energy Harvesters: Principles, Methods, And Applications, Bingqi Zhao, Feng Qian, Alexander Hatfield, Lei Zuo, Tian-Bing Xu Jan 2023

A Review Of Piezoelectric Footwear Energy Harvesters: Principles, Methods, And Applications, Bingqi Zhao, Feng Qian, Alexander Hatfield, Lei Zuo, Tian-Bing Xu

Mechanical & Aerospace Engineering Faculty Publications

Over the last couple of decades, numerous piezoelectric footwear energy harvesters (PFEHs) have been reported in the literature. This paper reviews the principles, methods, and applications of PFEH technologies. First, the popular piezoelectric materials used and their properties for PEEHs are summarized. Then, the force interaction with the ground and dynamic energy distribution on the footprint as well as accelerations are analyzed and summarized to provide the baseline, constraints, potential, and limitations for PFEH design. Furthermore, the energy flow from human walking to the usable energy by the PFEHs and the methods to improve the energy conversion efficiency are presented. …


Towards Sweetness Classification Of Orange Cultivars Using Short‑Wave Nir Spectroscopy, Ayesha Zeb, Waqar Shahid Qureshi, Abdul Ghafoor, Amanullah Malik, Muhammad Imran, Alina Mirza, Mohsin Islam Tiwana, Eisa Alanazi Jan 2023

Towards Sweetness Classification Of Orange Cultivars Using Short‑Wave Nir Spectroscopy, Ayesha Zeb, Waqar Shahid Qureshi, Abdul Ghafoor, Amanullah Malik, Muhammad Imran, Alina Mirza, Mohsin Islam Tiwana, Eisa Alanazi

Articles

The global orange industry constantly faces new technical challenges to meet consumer demands for quality fruits. Instead of traditional subjective fruit quality assessment methods, the interest in the horticulture industry has increased in objective, quantitative, and non-destructive assessment methods. Oranges have a thick peel which makes their non-destructive quality assessment challenging. This paper evaluates the potential of short-wave NIR spectroscopy and direct sweetness classification approach for Pakistani cultivars of orange, i.e., Red-Blood, Mosambi, and Succari. The correlation between quality indices, i.e., Brix, titratable acidity (TA), Brix: TA and BrimA (Brix minus acids), sensory assessment of the fruit, and short-wave NIR …


Skin Lesion Segmentation In Dermoscopic Images With Noisy Data, Norsang Lama, Jason Hagerty, Anand Nambisan, Ronald Joe Stanley, William Van Stoecker Jan 2023

Skin Lesion Segmentation In Dermoscopic Images With Noisy Data, Norsang Lama, Jason Hagerty, Anand Nambisan, Ronald Joe Stanley, William Van Stoecker

Electrical and Computer Engineering Faculty Research & Creative Works

We Propose a Deep Learning Approach to Segment the Skin Lesion in Dermoscopic Images. the Proposed Network Architecture Uses a Pretrained Efficient Net Model in the Encoder and Squeeze-And-Excitation Residual Structures in the Decoder. We Applied This Approach on the Publicly Available International Skin Imaging Collaboration (ISIC) 2017 Challenge Skin Lesion Segmentation Dataset. This Benchmark Dataset Has Been Widely Used in Previous Studies. We Observed Many Inaccurate or Noisy Ground Truth Labels. to Reduce Noisy Data, We Manually Sorted All Ground Truth Labels into Three Categories — Good, Mildly Noisy, and Noisy Labels. Furthermore, We Investigated the Effect of Such …


Lifelong Learning Control Of Nonlinear Systems With Constraints Using Multilayer Neural Networks With Application To Mobile Robot Tracking, Irfan Ganie, S. (Sarangapani) Jagannathan Jan 2023

Lifelong Learning Control Of Nonlinear Systems With Constraints Using Multilayer Neural Networks With Application To Mobile Robot Tracking, Irfan Ganie, S. (Sarangapani) Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

This Paper Presents a Novel Lifelong Multilayer Neural Network (MNN) Tracking Approach for an Uncertain Nonlinear Continuous-Time Strict Feedback System that is Subject to Time-Varying State Constraints. the Proposed Method Uses a Time-Varying Barrier Function to Accommodate the Constraints Leading to the Development of an Efficient Control Scheme. the Unknown Dynamics Are Approximated using a MNN, with Weights Tuned using a Singular Value Decomposition (SVD)-Based Technique. an Online Lifelong Learning (LL) based Elastic Weight Consolidation (EWC) Scheme is Also Incorporated to Alleviate the Issue of Catastrophic Forgetting. the Stability of the overall Closed-Loop System is Analyzed using Lyapunov Analysis. the …