Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 56490

Full-Text Articles in Physical Sciences and Mathematics

Phoneme Recognition For Pronunciation Improvement, Matthew Heywood May 2025

Phoneme Recognition For Pronunciation Improvement, Matthew Heywood

Theses/Capstones/Creative Projects

This project aims to improve English pronunciation by investigating speech errors and developing a tool to provide precise feedback. The study focuses on creating a new pronunciation tool that offers localized feedback, identifies specific errors, and suggests corrective measures. By addressing the shortcomings of current methods, this research seeks to enhance pronunciation refinement.

Utilizing cutting-edge technology, the tool leverages speech-to-phoneme AI models and modified lazy string matching algorithms to compare the user's spoken input with the intended pronunciation. This allows for a detailed analysis of discrepancies, providing users actionable insights into their phonetic errors. The speech-to-phoneme AI models mark a …


Sustainable Energysense: A Predictive Machine Learning Framework For Optimizing Residential Electricity Consumption, Murad Al-Rajab, Samia Loucif Dec 2024

Sustainable Energysense: A Predictive Machine Learning Framework For Optimizing Residential Electricity Consumption, Murad Al-Rajab, Samia Loucif

All Works

In a world where electricity is often taken for granted, the surge in consumption poses significant challenges, including elevated CO2 emissions and rising prices. These issues not only impact consumers but also have broader implications for the global environment. This paper endeavors to propose a smart application dedicated to optimizing the electricity consumption of household appliances. It employs Augmented Reality (AR) technology along with YOLO to detect electrical appliances and provide detailed electricity consumption insights, such as displaying the appliance consumption rate and computing the total electricity consumption based on the number of hours the appliance was used. The application …


Asthma Prevalence Among United States Population Insights From Nhanes Data Analysis, Sarya Swed, Bisher Sawaf, Feras Al-Obeidat, Wael Hafez, Amine Rakab, Hidar Alibrahim, Mohamad Nour Nasif, Baraa Alghalyini, Abdul Rehman Zia Zaidi, Lamees Alshareef, Fadel Alqatati, Fathima Zamrath Zahir, Ashraf I. Ahmed, Mulham Alom, Anas Sultan, Abdullah Almahmoud, Agyad Bakkour, Ivan Cherrez-Ojeda Dec 2024

Asthma Prevalence Among United States Population Insights From Nhanes Data Analysis, Sarya Swed, Bisher Sawaf, Feras Al-Obeidat, Wael Hafez, Amine Rakab, Hidar Alibrahim, Mohamad Nour Nasif, Baraa Alghalyini, Abdul Rehman Zia Zaidi, Lamees Alshareef, Fadel Alqatati, Fathima Zamrath Zahir, Ashraf I. Ahmed, Mulham Alom, Anas Sultan, Abdullah Almahmoud, Agyad Bakkour, Ivan Cherrez-Ojeda

All Works

Asthma is a prevalent respiratory condition that poses a substantial burden on public health in the United States. Understanding its prevalence and associated risk factors is vital for informed policymaking and public health interventions. This study aims to examine asthma prevalence and identify major risk factors in the U.S. population. Our study utilized NHANES data between 1999 and 2020 to investigate asthma prevalence and associated risk factors within the U.S. population. We analyzed a dataset of 64,222 participants, excluding those under 20 years old. We performed binary regression analysis to examine the relationship of demographic and health related covariates with …


Exploring Post-Covid-19 Health Effects And Features With Advanced Machine Learning Techniques, Muhammad N. Islam, Md S. Islam, Nahid H. Shourav, Iftiaqur Rahman, Faiz A. Faisal, Md M. Islam, Iqbal H. Sarker Dec 2024

Exploring Post-Covid-19 Health Effects And Features With Advanced Machine Learning Techniques, Muhammad N. Islam, Md S. Islam, Nahid H. Shourav, Iftiaqur Rahman, Faiz A. Faisal, Md M. Islam, Iqbal H. Sarker

Research outputs 2022 to 2026

COVID-19 is an infectious respiratory disease that has had a significant impact, resulting in a range of outcomes including recovery, continued health issues, and the loss of life. Among those who have recovered, many experience negative health effects, particularly influenced by demographic factors such as gender and age, as well as physiological and neurological factors like sleep patterns, emotional states, anxiety, and memory. This research aims to explore various health factors affecting different demographic profiles and establish significant correlations among physiological and neurological factors in the post-COVID-19 state. To achieve these objectives, we have identified the post-COVID-19 health factors and …


Jamming Precoding In Af Relay-Aided Plc Systems With Multiple Eavessdroppers, Zhengmin Kong, Jiaxing Cui, Li Ding, Tao Huang, Shihao Yan Dec 2024

Jamming Precoding In Af Relay-Aided Plc Systems With Multiple Eavessdroppers, Zhengmin Kong, Jiaxing Cui, Li Ding, Tao Huang, Shihao Yan

Research outputs 2022 to 2026

Enhancing information security has become increasingly significant in the digital age. This paper investigates the concept of physical layer security (PLS) within a relay-aided power line communication (PLC) system operating over a multiple-input multiple-output (MIMO) channel based on MK model. Specifically, we examine the transmission of confidential signals between a source and a distant destination while accounting for the presence of multiple eavesdroppers, both colluding and non-colluding. We propose a two-phase jamming scheme that leverages a full-duplex (FD) amplify-and-forward (AF) relay to address this challenge. Our primary objective is to maximize the secrecy rate, which necessitates the optimization of the …


Hisoma: A Hierarchical Multi-Agent Model Integrating Self-Organizing Neural Networks With Multi-Agent Deep Reinforcement Learning, Minghong Geng, Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan Oct 2024

Hisoma: A Hierarchical Multi-Agent Model Integrating Self-Organizing Neural Networks With Multi-Agent Deep Reinforcement Learning, Minghong Geng, Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan

Research Collection School Of Computing and Information Systems

Multi-agent deep reinforcement learning (MADRL) has shown remarkable advancements in the past decade. However, most current MADRL models focus on task-specific short-horizon problems involving a small number of agents, limiting their applicability to long-horizon planning in complex environments. Hierarchical multi-agent models offer a promising solution by organizing agents into different levels, effectively addressing tasks with varying planning horizons. However, these models often face constraints related to the number of agents or levels of hierarchies. This paper introduces HiSOMA, a novel hierarchical multi-agent model designed to handle long-horizon, multi-agent, multi-task decision-making problems. The top-level controller, FALCON, is modeled as a class …


Generative Ai In Software Engineering Must Be Human-Centered: The Copenhagen Manifesto, D. Russo, S. Van Berkel Baltes, Cristoph Treude, Christoph Treude Oct 2024

Generative Ai In Software Engineering Must Be Human-Centered: The Copenhagen Manifesto, D. Russo, S. Van Berkel Baltes, Cristoph Treude, Christoph Treude

Research Collection School Of Computing and Information Systems

The advent of Generative Artificial Intelligence—systems that can produce human-like content such as text, music, visual art, or source code—marks not only a significant leap for Artificial Intelligence (AI) but also a pivotal moment for software practitioners and researchers. The role of software engineering researchers and practitioners in adopting the technologies that shape our world is critical. Historically, the human aspects of developing software have been treated as secondary to more technical innovations. However, the emergence of Generative AI will simultaneously enhance human capabilities while surfacing complex ethical, social, legal, and technical challenges.While primarily aimed at software engineering (SE) researchers …


What Do We Know About Hugging Face? A Systematic Literature Review And Quantitative Validation Of Qualitative Claims, Jason Jones, Wenxin Jiang, Nicholas Synovic, George K. Thiruvathukal, James C. Davis Oct 2024

What Do We Know About Hugging Face? A Systematic Literature Review And Quantitative Validation Of Qualitative Claims, Jason Jones, Wenxin Jiang, Nicholas Synovic, George K. Thiruvathukal, James C. Davis

Computer Science: Faculty Publications and Other Works

Background: Collaborative Software Package Registries (SPRs) are an integral part of the software supply chain. Much engineering work synthesizes SPR package into applications. Prior research has examined SPRs for traditional software, such as NPM (JavaScript) and PyPI (Python). Pre-Trained Model (PTM) Registries are an emerging class of SPR of increasing importance, because they support the deep learning supply chain.
Aims: Recent empirical research has examined PTM registries in ways such as vulnerabilities, reuse processes, and evolution. However, no existing research synthesizes them to provide a systematic understanding of the current knowledge. Some of the existing research includes qualitative …


Granular3d: Delving Into Multi-Granularity 3d Scene Graph Prediction, Kaixiang Huang, Jingru Yang, Jin Wang, Shengfeng He, Zhan Wang, Haiyan He, Qifeng Zhang, Guodong Lu Sep 2024

Granular3d: Delving Into Multi-Granularity 3d Scene Graph Prediction, Kaixiang Huang, Jingru Yang, Jin Wang, Shengfeng He, Zhan Wang, Haiyan He, Qifeng Zhang, Guodong Lu

Research Collection School Of Computing and Information Systems

This paper addresses the significant challenges in 3D Semantic Scene Graph (3DSSG) prediction, essential for understanding complex 3D environments. Traditional approaches, primarily using PointNet and Graph Convolutional Networks, struggle with effectively extracting multi-grained features from intricate 3D scenes, largely due to a focus on global scene processing and single-scale feature extraction. To overcome these limitations, we introduce Granular3D, a novel approach that shifts the focus towards multi-granularity analysis by predicting relation triplets from specific sub-scenes. One key is the Adaptive Instance Enveloping Method (AIEM), which establishes an approximate envelope structure around irregular instances, providing shape-adaptive local point cloud sampling, thereby …


Enabling Iov Communication Through Secure Decentralized Clustering Using Federated Deep Reinforcement Learning, Chandler Scott Aug 2024

Enabling Iov Communication Through Secure Decentralized Clustering Using Federated Deep Reinforcement Learning, Chandler Scott

Electronic Theses and Dissertations

The Internet of Vehicles (IoV) holds immense potential for revolutionizing transporta- tion systems by facilitating seamless vehicle-to-vehicle and vehicle-to-infrastructure communication. However, challenges such as congestion, pollution, and security per- sist, particularly in rural areas with limited infrastructure. Existing centralized solu- tions are impractical in such environments due to latency and privacy concerns. To address these challenges, we propose a decentralized clustering algorithm enhanced with Federated Deep Reinforcement Learning (FDRL). Our approach enables low- latency communication, competitive packet delivery ratios, and cluster stability while preserving data privacy. Additionally, we introduce a trust-based security framework for IoV environments, integrating a central authority …


Exploring The Integration Of Blockchain In Iot Use Cases: Challenges And Opportunities, Ivannah George Aug 2024

Exploring The Integration Of Blockchain In Iot Use Cases: Challenges And Opportunities, Ivannah George

Electronic Theses, Projects, and Dissertations

Blockchain and The Internet of Things (IoT) is a significant paradigm which has gained traction in today’s digital age as two complimentary technologies. The combination of IoT's connectivity with blockchain's security creates new opportunities and solves problems associated with centralized systems. This culminating project aims to delve deeper into the integration of blockchain technology in IoT applications based on select use cases to uncover potential benefits and significant challenges of blockchain integration across different sectors. The research objectives to be addressed are: (RO1) How emerging vulnerabilities manifest in the implementation of blockchain within current IoT ecosystems. (RO2) How current opportunities …


Anopas: Practical Anonymous Transit Pass From Group Signatures With Time-Bound Keys, Rui Shi, Yang Yang, Yingjiu Li, Huamin Feng, Hwee Hwa Pang, Robert H. Deng Aug 2024

Anopas: Practical Anonymous Transit Pass From Group Signatures With Time-Bound Keys, Rui Shi, Yang Yang, Yingjiu Li, Huamin Feng, Hwee Hwa Pang, Robert H. Deng

Research Collection School Of Computing and Information Systems

An anonymous transit pass system allows passengers to access transport services within fixed time periods, with their privileges automatically deactivating upon time expiration. Although existing transit pass systems are deployable on powerful devices like PCs, their adaptation to more user-friendly devices, such as mobile phones with smart cards, is inefficient due to their reliance on heavy-weight operations like bilinear maps. In this paper, we introduce an innovative anonymous transit pass system, dubbed Anopas, optimized for deployment on mobile phones with smart cards, where the smart card is responsible for crucial lightweight operations and the mobile phone handles key-independent and time-consuming …


An Llm-Assisted Easy-To-Trigger Poisoning Attack On Code Completion Models: Injecting Disguised Vulnerabilities Against Strong Detection, Shenao Yan, Shen Wang, Yue Duan, Hanbin Hong, Kiho Lee, Doowon Kim, Yuan Hong Aug 2024

An Llm-Assisted Easy-To-Trigger Poisoning Attack On Code Completion Models: Injecting Disguised Vulnerabilities Against Strong Detection, Shenao Yan, Shen Wang, Yue Duan, Hanbin Hong, Kiho Lee, Doowon Kim, Yuan Hong

Research Collection School Of Computing and Information Systems

Large Language Models (LLMs) have transformed code completion tasks, providing context-based suggestions to boost developer productivity in software engineering. As users often fine-tune these models for specific applications, poisoning and backdoor attacks can covertly alter the model outputs. To address this critical security challenge, we introduce CODEBREAKER, a pioneering LLM-assisted backdoor attack framework on code completion models. Unlike recent attacks that embed malicious payloads in detectable or irrelevant sections of the code (e.g., comments), CODEBREAKER leverages LLMs (e.g., GPT-4) for sophisticated payload transformation (without affecting functionalities), ensuring that both the poisoned data for fine-tuning and generated code can evade strong …


Enhancing Monthly Streamflow Prediction Using Meteorological Factors And Machine Learning Models In The Upper Colorado River Basin, Saichand Thota Aug 2024

Enhancing Monthly Streamflow Prediction Using Meteorological Factors And Machine Learning Models In The Upper Colorado River Basin, Saichand Thota

All Graduate Theses and Dissertations, Fall 2023 to Present

Understanding and predicting streamflow along river basins is vital for planning future developments and ensuring safety, especially with climate change challenges. Our study focused on forecasting streamflow at Lees Ferry, a key location along the Colorado River in the Upper Colorado River Basin. We employed four machine learning models - Random Forest Regression, Long short-term memory, Gated Recurrent Unit, and Seasonal Auto-Regressive Integrated Moving Average; and combined historical streamflow data with meteorological factors such as snow water equivalent, temperature, and precipitation. Our analysis spanned 30 years of data from 1991 to 2020.

Our findings revealed that the Random Forest Regression …


Data Collector Selection Ranking-Based Method For Collaborative Multi-Tasks In Ubiquitous Environments, Belal Z. Hassan, Ahmed. A. A. Gad-Elrab, Mohamed S. Farag, S. E. Abu-Youssef Aug 2024

Data Collector Selection Ranking-Based Method For Collaborative Multi-Tasks In Ubiquitous Environments, Belal Z. Hassan, Ahmed. A. A. Gad-Elrab, Mohamed S. Farag, S. E. Abu-Youssef

Al-Azhar Bulletin of Science

In Ubiquitous Computing and the Internet of Things, the sensing and control of objects involve numerous devices collecting and transmitting data. However, connecting these devices without fostering collaboration leads to suboptimal system performance. As the number of connected sensing devices in Internet of Things increases, efficient task accomplishment through collaboration becomes imperative. This paper proposes a Data Collector Selection Method for Collaborative Multi-Tasks to address this challenge, considering task preferences and uncertainty in data collectors' contributions. The proposed method incorporates three key aspects: (1) Using Fuzzy Analytical Hierarchy Process to determine optimal weights for task preferences; (2) Ranking data collectors …


Creating A Virtual Hierarchy From A Relational Database, Yucong Mo Aug 2024

Creating A Virtual Hierarchy From A Relational Database, Yucong Mo

All Graduate Theses and Dissertations, Fall 2023 to Present

In data management and modeling, the value of the hierarchical model is that it does not require expensive JOIN operations at runtime; once the hierarchy is built, the relationships among data are embedded in the tree-like hierarchical structure, and thus querying data could be much faster than using a relational database. Today most data is stored in relational databases, but if the data were stored in hierarchies, what would these hierarchies look like? And more importantly, would this transition lead to a more efficient database? This thesis explores these questions by introducing a set of algorithms to convert a relational …


Using Cache Files To Improve The Efficiency Of The Ucgretina Simulation Code, Blake Mcnulty Jul 2024

Using Cache Files To Improve The Efficiency Of The Ucgretina Simulation Code, Blake Mcnulty

Physics and Astronomy Summer Fellows

UCGretina is a program that is used to simulate the Gretina gamma-ray tracking array used in experiments at the Facility for Rare Isotope Beams (FRIB) to collect gamma rays produced in reactions such as proton scattering. This is done by generating a simulation of the beam particles used and sending them into a simulated recreation that mimics the experimental environment. My job this summer was to tackle a major issue that the program had which is the speed or efficiency at which it ran. The main issue was that it would take days for certain simulation sets to run which …


Using Gamification To Enhance Mastery Of Network Security Concepts, Kevin Hilliard, Xiaohong Yuan, Kelvin Bryant, Jinsheng Xu, Jinghua Zhang Jul 2024

Using Gamification To Enhance Mastery Of Network Security Concepts, Kevin Hilliard, Xiaohong Yuan, Kelvin Bryant, Jinsheng Xu, Jinghua Zhang

Journal of Cybersecurity Education, Research and Practice

Gamification has proven to be effective in engaging and encouraging people to work towards and achieve goals. Many students struggle to focus on schoolwork, due to a lack of interest, lack of understanding, or other factors unique to the student. Applying gamification elements to education can help engage these students in learning their course material and help them excel academically. This study examines the effectiveness of using gamification techniques to enhance the learning experience in college Computer Science courses. A video game application is utilized to review and reinforce cybersecurity concepts that students have already been taught in class. Previous …


Collaborative Pathways To Cybersecurity Excellence: Insights From Industry And Academia In The Southeastern Us, Humayun Zafar, Carole L. Hollingsworth, Tridib Bandyopadhyay, Adriane B. Randolph Jul 2024

Collaborative Pathways To Cybersecurity Excellence: Insights From Industry And Academia In The Southeastern Us, Humayun Zafar, Carole L. Hollingsworth, Tridib Bandyopadhyay, Adriane B. Randolph

Journal of Cybersecurity Education, Research and Practice

This research article examines conversations happening between cybersecurity academics and industry leaders with a goal to improve the development of cybersecurity professionals. We specifically focus on efforts in the Southeast region of the United States. The discussion features insights from a panel consisting of an academic cybersecurity researcher, a Chief Information Officer (CIO) of a leading technology company with over 1,000 employees, and a CIO of a financial services firm, which employs over 3,000 people. The discussion sheds light on the challenges and opportunities involved in aligning cybersecurity programs with industry requirements. This article explores strategies for academia and businesses …


Vysion Software, Isaias Hernandez-Dominguez Jr, Chander Luderman Miller Jul 2024

Vysion Software, Isaias Hernandez-Dominguez Jr, Chander Luderman Miller

2024 Symposium

Vision loss presents significant challenges in daily life. Existing solutions for blind and visually impaired individuals are often limited in functionality, expensive, or complex to use. Vysion Software addresses this gap by developing a user-friendly, all-in-one AI companion app that provides features including text summarization, real-time audio descriptions, and AI-enhanced navigation. This project details the development plan, initial functionalities, and future vision for Vysion Software.


Survey Of Memory Consolidation Techniques For Video Question Answering, Matthew Couts, Pha Nguyen, Khoa Luu Jul 2024

Survey Of Memory Consolidation Techniques For Video Question Answering, Matthew Couts, Pha Nguyen, Khoa Luu

Inquiry: The University of Arkansas Undergraduate Research Journal

Video Question Answering (VideoQA) is a field of research focused on developing models that can engage in natural conversations with humans about the content of videos. Currently, the most successful approaches involve analyzing videos frame-by-frame, which is computationally and memory-intensive. To imitate human memory, the Atkinson-Shiffrin memory model can formulate the machine’s video understanding capability through Vision-Language Models. Reducing the number of frames processed by the model is a crucial operation in this approach category and can be handled by a memory consolidation algorithm. The memory consolidation algorithm should be able to determine the keyframes to transfer from short-term to …


A Splash Of Color: A Dual Dive Into The Effects Of Evo On Decision-Making With Goal Models: Supplemental Material, Alicia M. Grubb, Yesugen Baatartogtokh, Irene Foster Jul 2024

A Splash Of Color: A Dual Dive Into The Effects Of Evo On Decision-Making With Goal Models: Supplemental Material, Alicia M. Grubb, Yesugen Baatartogtokh, Irene Foster

Computer Science: Faculty Publications

Supplemental material for the paper: "A Splash of Color: A Dual Dive into the Effects of EVO on Decision-Making with Goal Models" doi.org/10.1007/s00766-024-00422-5


Microservices Architecture: Evolution, Realizing Benefits, And Addressing Challenges In The Modern Software Era -A Systematic Literature Review, Linah M. Elnaghi, Ramadan Moawad Jul 2024

Microservices Architecture: Evolution, Realizing Benefits, And Addressing Challenges In The Modern Software Era -A Systematic Literature Review, Linah M. Elnaghi, Ramadan Moawad

Future Computing and Informatics Journal

This paper explores the world of modern software development and the rising popularity of microservices architecture. Microservices, a modern approach, brings benefits like scalability, Reusability, and fault tolerance. challenging traditional monolithic approaches.This survey involves a detailed comparison, unraveling the motivations behind the wide usage of microservices. This paper extracts insights from a diverse range of studies, presenting a clear and accessible synthesis of the key benefits and challenges associated with microservices architecture. Through a methodical analysis of these factors, the study aims to discern the most pivotal advantages and challenges within the domain of microservices. Steering away from complicated terminology, …


Design And Implementation Of Truly Random Number Generation Using Memristors For In-Memory Computing, Nick Felker Jul 2024

Design And Implementation Of Truly Random Number Generation Using Memristors For In-Memory Computing, Nick Felker

Theses and Dissertations

This paper proposes a new security module based on non-volatile memory. The module uses a memristor-based true random number generator to generate random numbers which can be used for cryptography. The module is implemented in software using a modified RISC-V instruction set architecture. The paper evaluates the performance of the module using the RISC-V simulator Gem5. The results show that the module can generate random numbers at a rate of 63 microseconds per number, which is faster than the standard C library’s random number generator. The module can also be used to scramble strings of characters and generate hashes of …


Unveiling The Dynamics Of Crisis Events: Sentiment And Emotion Analysis Via Multi-Task Learning With Attention Mechanism And Subject-Based Intent Prediction, Phyo Yi Win Myint, Siaw Ling Lo, Yuhao Zhang Jul 2024

Unveiling The Dynamics Of Crisis Events: Sentiment And Emotion Analysis Via Multi-Task Learning With Attention Mechanism And Subject-Based Intent Prediction, Phyo Yi Win Myint, Siaw Ling Lo, Yuhao Zhang

Research Collection School Of Computing and Information Systems

In the age of rapid internet expansion, social media platforms like Twitter have become crucial for sharing information, expressing emotions, and revealing intentions during crisis situations. They offer crisis responders a means to assess public sentiment, attitudes, intentions, and emotional shifts by monitoring crisis-related tweets. To enhance sentiment and emotion classification, we adopt a transformer-based multi-task learning (MTL) approach with attention mechanism, enabling simultaneous handling of both tasks, and capitalizing on task interdependencies. Incorporating attention mechanism allows the model to concentrate on important words that strongly convey sentiment and emotion. We compare three baseline models, and our findings show that …


Hierarchical Damage Correlations For Old Photo Restoration, Weiwei Cai, Xuemiao Xu, Jiajia Xu, Huaidong Zhang, Haoxin Yang, Kun Zhang, Shengfeng He Jul 2024

Hierarchical Damage Correlations For Old Photo Restoration, Weiwei Cai, Xuemiao Xu, Jiajia Xu, Huaidong Zhang, Haoxin Yang, Kun Zhang, Shengfeng He

Research Collection School Of Computing and Information Systems

Restoring old photographs can preserve cherished memories. Previous methods handled diverse damages within the same network structure, which proved impractical. In addition, these methods cannot exploit correlations among artifacts, especially in scratches versus patch-misses issues. Hence, a tailored network is particularly crucial. In light of this, we propose a unified framework consisting of two key components: ScratchNet and PatchNet. In detail, ScratchNet employs the parallel Multi-scale Partial Convolution Module to effectively repair scratches, learning from multi-scale local receptive fields. In contrast, the patch-misses necessitate the network to emphasize global information. To this end, we incorporate a transformer-based encoder and decoder …


Towards Automated Slide Augmentation To Discover Credible And Relevant Links, Dilan Dinushka Senarath Arachchige, Christopher M. Poskitt, Kwan Chin (Xu Guangjin) Koh, Heng Ngee Mok, Hady Wirawan Lauw Jul 2024

Towards Automated Slide Augmentation To Discover Credible And Relevant Links, Dilan Dinushka Senarath Arachchige, Christopher M. Poskitt, Kwan Chin (Xu Guangjin) Koh, Heng Ngee Mok, Hady Wirawan Lauw

Research Collection School Of Computing and Information Systems

Learning from concise educational materials, such as lecture notes and presentation slides, often prompts students to seek additional resources. Newcomers to a subject may struggle to find the best keywords or lack confidence in the credibility of the supplementary materials they discover. To address these problems, we introduce Slide++, an automated tool that identifies keywords from lecture slides, and uses them to search for relevant links, videos, and Q&As. This interactive website integrates the original slides with recommended resources, and further allows instructors to 'pin' the most important ones. To evaluate the effectiveness of the tool, we trialled the system …


Contextualizing Interpersonal Data Sharing In Smart Homes, Weijia He, Nathan Reitinger, Atheer Almogbil, Yi-Shyuan Chiang, Timothy J. Pierson, David Kotz Jul 2024

Contextualizing Interpersonal Data Sharing In Smart Homes, Weijia He, Nathan Reitinger, Atheer Almogbil, Yi-Shyuan Chiang, Timothy J. Pierson, David Kotz

Dartmouth Scholarship

A key feature of smart home devices is monitoring the environment and recording data. These devices provide security via motion-detection video alerts, cost-savings via thermostat usage history, and peace of mind via functions like auto-locking doors or water leak detectors. At the same time, the sharing of this information in interpersonal relationships---though necessary---is currently accomplished on an all-or-nothing basis. This can easily lead to oversharing in a multi-user environment. Although prior work has studied people's perceptions of information sharing with vendors or ISPs, the sharing of household data among users who interact personally is less well understood. Interpersonal situations make …


Enhancing Adult Learner Success In Higher Education Through Decision Tree Models: A Machine Learning Approach, Emily Barnes, James Hutson, Karriem Perry Jul 2024

Enhancing Adult Learner Success In Higher Education Through Decision Tree Models: A Machine Learning Approach, Emily Barnes, James Hutson, Karriem Perry

Faculty Scholarship

This article explores the use of machine learning, specifically Classification and Regression Trees (CART), to address the unique challenges faced by adult learners in higher education. These learners confront socio-cultural, economic, and institutional hurdles, such as stereotypes, financial constraints, and systemic inefficiencies. The study utilizes decision tree models to evaluate their effectiveness in predicting graduation outcomes, which helps in formulating tailored educational strategies. The research analyzed a comprehensive dataset spanning the academic years 2013–2014 to 2021–2022, evaluating the predictive accuracy of CART models using precision, recall, and F1 score. Findings indicate that attendance, age, and Pell Grant eligibility are key …


Introduction To Programming And Applied Analytics Using Python, Matt Brown Jul 2024

Introduction To Programming And Applied Analytics Using Python, Matt Brown

ATU Faculty OER Books and Materials

This open electronic textbook is a collection of lecture notes, assignments, and additional background material for a junior level analytics course targeted for business students, it is free to use and copy. The text assumes readers have not had prior programming or computing courses, but have had at least one analytics course. The textbook differs from other textbooks because it serves a dual purpose, to first introduce to students the Python programming language and secondly to introduce analytics programming in Python. It is not meant to be a comprehensive book on the Python language or data analytics, rather a semester’s …