Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 47981

Full-Text Articles in Physical Sciences and Mathematics

Using Object Detection To Navigate A Game Playfield, Peter Kearnan Hyde-Smith Apr 2023

Using Object Detection To Navigate A Game Playfield, Peter Kearnan Hyde-Smith

Master's Theses (2009 -)

Perhaps the crown jewel of AI is the self-navigating agent. To take many sources of data as input and use it to traverse complex and varied areas while mitigating risk and damage to the vehicle that is being controlled, visual object detection is a key part of the overall suite of this technology. While much efforts are being put towards real-world applications, for example self-driving cars, healthcare related issues and automated manufacturing, we apply object detection in a different way; the automation of movement across a video game play field. We take the TensorFlow Object Detection API and use it …


The Vehicle Routing Problem With Simultaneous Pickup And Delivery And Occasional Drivers, Vincent F. Yu, Grace Aloina, Panca Jodiawan, Aldy Gunawan, Tsung-C. Huang Mar 2023

The Vehicle Routing Problem With Simultaneous Pickup And Delivery And Occasional Drivers, Vincent F. Yu, Grace Aloina, Panca Jodiawan, Aldy Gunawan, Tsung-C. Huang

Research Collection School Of Computing and Information Systems

This research addresses the Vehicle Routing Problem with Simultaneous Pickup and Delivery and Occasional Drivers (VRPSPDOD), which is inspired from the importance of addressing product returns and the emerging notion of involving available crowds to perform pickup and delivery activities in exchange for some compensation. At the depot, a set of regular vehicles is available to deliver and/or pick up customers’ goods. A set of occasional drivers, each defined by their origin, destination, and flexibility, is also able to help serve the customers. The objective of VRPSPDOD is to minimize the total traveling cost of operating regular vehicles and total …


Learning Comprehensive Global Features In Person Re-Identification: Ensuring Discriminativeness Of More Local Regions, Jiali Xia, Jianqiang Huang, Shibao Zheng, Qin Zhou, Bernt Schiele, Xian-Sheng Hua, Qianru Sun Feb 2023

Learning Comprehensive Global Features In Person Re-Identification: Ensuring Discriminativeness Of More Local Regions, Jiali Xia, Jianqiang Huang, Shibao Zheng, Qin Zhou, Bernt Schiele, Xian-Sheng Hua, Qianru Sun

Research Collection School Of Computing and Information Systems

Person re-identification (Re-ID) aims to retrieve person images from a large gallery given a query image of a person of interest. Global information and fine-grained local features are both essential for the representation. However, global embedding learned by naive classification model tends to be trapped in the most discriminative local region, leading to poor evaluation performance. To address the issue, we propose a novel baseline network that learns strong global feature termed as Comprehensive Global Embedding (CGE), ensuring more local regions of global feature maps to be discriminative. In this work, two key modules are proposed including Non-parameterized Local Classifier …


Safe Delivery Of Critical Services In Areas With Volatile Security Situation Via A Stackelberg Game Approach, Tien Mai, Arunesh Sinha Feb 2023

Safe Delivery Of Critical Services In Areas With Volatile Security Situation Via A Stackelberg Game Approach, Tien Mai, Arunesh Sinha

Research Collection School Of Computing and Information Systems

Vaccine delivery in under-resourced locations with security risks is not just challenging but also life threatening. The COVID pandemic and the need to vaccinate added even more urgency to this issue. Motivated by this problem, we propose a general framework to set-up limited temporary (vaccination) centers that balance physical security and desired (vaccine) service coverage with limited resources. We set-up the problem as a Stackelberg game between the centers operator (defender) and an adversary, where the set of centers is not fixed a priori but is part of the decision output. This results in a mixed combinatorial and continuous optimization …


A Fair Incentive Scheme For Community Health Workers, Avinandan Bose, Tracey Li, Arunesh Sinha, Tien Mai Feb 2023

A Fair Incentive Scheme For Community Health Workers, Avinandan Bose, Tracey Li, Arunesh Sinha, Tien Mai

Research Collection School Of Computing and Information Systems

Community health workers (CHWs) play a crucial role in the last mile delivery of essential health services to under-served populations in low-income countries. Many non-governmental organizations (NGOs) provide training and support to enable CHWs to deliver health services to their communities, with no charge to the recipients of the services. This includes monetary compensation for the work that CHWs perform, which is broken down into a series of well-defined tasks. In this work, we partner with a NGO D-Tree International to design a fair monetary compensation scheme for tasks performed by CHWs in the semi-autonomous region of Zanzibar in Tanzania, …


Online Hyperparameter Optimization For Class-Incremental Learning, Yaoyao Liu, Yingying Li, Bernt Schiele, Qianru Sun Feb 2023

Online Hyperparameter Optimization For Class-Incremental Learning, Yaoyao Liu, Yingying Li, Bernt Schiele, Qianru Sun

Research Collection School Of Computing and Information Systems

Class-incremental learning (CIL) aims to train a classification model while the number of classes increases phase-by-phase. An inherent challenge of CIL is the stability-plasticity tradeoff, i.e., CIL models should keep stable to retain old knowledge and keep plastic to absorb new knowledge. However, none of the existing CIL models can achieve the optimal tradeoff in different data-receiving settings—where typically the training-from-half (TFH) setting needs more stability, but the training-from-scratch (TFS) needs more plasticity. To this end, we design an online learning method that can adaptively optimize the tradeoff without knowing the setting as a priori. Specifically, we first introduce the …


Towards Carbon Neutrality: Prediction Of Wave Energy Based On Improved Gru In Maritime Transportation, Zhihan Lv, Nana Wang, Ranran Lou, Yajun Tian, Mohsen Guizani Feb 2023

Towards Carbon Neutrality: Prediction Of Wave Energy Based On Improved Gru In Maritime Transportation, Zhihan Lv, Nana Wang, Ranran Lou, Yajun Tian, Mohsen Guizani

Machine Learning Faculty Publications

Efficient use of renewable energy is one of the critical measures to achieve carbon neutrality. Countries have introduced policies to put carbon neutrality on the agenda to achieve relatively zero emissions of greenhouse gases and to cope with the crisis brought about by global warming. This work analyzes the wave energy with high energy density and wide distribution based on understanding of various renewable energy sources. This study provides a wave energy prediction model for energy harvesting. At the same time, the Gated Recurrent Unit network (GRU), Bayesian optimization algorithm, and attention mechanism are introduced to improve the model's performance. …


A Predictive Model For Diabetes Mellitus Using Machine Learning Techniques (A Study In Nigeria), Abraham Eseoghene Evwiekpaefe, Nafisat Abdulkadir Jan 2023

A Predictive Model For Diabetes Mellitus Using Machine Learning Techniques (A Study In Nigeria), Abraham Eseoghene Evwiekpaefe, Nafisat Abdulkadir

The African Journal of Information Systems

Diabetes Mellitus (DM) is a metabolic disorder that occurs when the blood sugar level in the body is considered to be high, thereby resulting in inadequate insulin in the body leading to a myriad complications. The World Health Organization in 2021 indicated that in 2019, diabetes was the direct cause of 1.5 million deaths. Though some research has been carried out in the area of DM prediction in high-income countries, not much has been done in middle/low-income countries like Nigeria, using factors that are peculiar to their environment. This paper, therefore, aims to develop a machine learning model that predicts …


Machine Learning Models Interpretability For Malware Detection Using Model Agnostic Language For Exploration And Explanation, Ikuromor Mabel Ogiriki Jan 2023

Machine Learning Models Interpretability For Malware Detection Using Model Agnostic Language For Exploration And Explanation, Ikuromor Mabel Ogiriki

Theses and Dissertations

The adoption of the internet as a global platform has birthed a significant rise in cyber-attacks of various forms ranging from Trojans, worms, spyware, ransomware, botnet malware, rootkit, etc. In order to tackle the issue of all these forms of malware, there is a need to understand and detect them. There are various methods of detecting malware which include signature, behavioral, and machine learning. Machine learning methods have proven to be the most efficient of all for malware detection. In this thesis, a system that utilizes both the signature and dynamic behavior-based detection techniques, with the added layer of the …


Adoption Of Artificial Intelligence (Ai) In Local Governments: An Exploratory Study On The Attitudes And Perceptions Of Officials In A Municipal Government In The Philippines, Charmaine Distor, Odkhuu Khaltar, M. Jae Moon Jan 2023

Adoption Of Artificial Intelligence (Ai) In Local Governments: An Exploratory Study On The Attitudes And Perceptions Of Officials In A Municipal Government In The Philippines, Charmaine Distor, Odkhuu Khaltar, M. Jae Moon

Journal of Public Affairs and Development

Emerging technologies like artificial intelligence (AI) have been instrumental in transforming governments in recent years, which is why several agencies worldwide have integrated them into their governance strategies. One of the countries that have paid attention to the potential of AI is the Philippines, which launched its national AI roadmap in 2021. This study investigated the perceived acceptance and adoption of AI in the Municipality of Carmona located in the Province of Cavite. Following the combined constructs from the Technology Acceptance Model (TAM) and Unified Theory of Acceptance and Use of Technology (UTAUT), perception data were gathered from among Carmona’s …


Survey On Outdoor Navigation Applications For People With Visual Impairment, Luis Miralles-Pechuán Jan 2023

Survey On Outdoor Navigation Applications For People With Visual Impairment, Luis Miralles-Pechuán

Datasets

Outdoor navigation is a very challenging activity for People who suffer from Blindness or Visually Impairment (PBVI). Having examined the current literature, we conclude that there are very few publications providing a nuanced understanding of how PBVI undertake a journey in an outdoor environment and what their main challenges and obstacles are. To throw some light on this gap, we conducted a questionnaire in collaboration with the National Council for the Blind Ireland (NCBI) for 49 PBVI. Our questionnaire gathers information about key aspects related to PBVI outdoor navigation such as support tools/devices, hazards, journey preparation, crossing roads, and understanding …


Leveraging A Machine Learning Based Predictive Framework To Study Brain-Phenotype Relationships, Sage Hahn Jan 2023

Leveraging A Machine Learning Based Predictive Framework To Study Brain-Phenotype Relationships, Sage Hahn

Graduate College Dissertations and Theses

An immense collective effort has been put towards the development of methods forquantifying brain activity and structure. In parallel, a similar effort has focused on collecting experimental data, resulting in ever-growing data banks of complex human in vivo neuroimaging data. Machine learning, a broad set of powerful and effective tools for identifying multivariate relationships in high-dimensional problem spaces, has proven to be a promising approach toward better understanding the relationships between the brain and different phenotypes of interest. However, applied machine learning within a predictive framework for the study of neuroimaging data introduces several domain-specific problems and considerations, leaving the …


Improving Developers' Understanding Of Regex Denial Of Service Tools Through Anti-Patterns And Fix Strategies, Sk Adnan Hassan, Zainab Aamir, Dongyoon Lee, James C. Davis, Francisco Servant Jan 2023

Improving Developers' Understanding Of Regex Denial Of Service Tools Through Anti-Patterns And Fix Strategies, Sk Adnan Hassan, Zainab Aamir, Dongyoon Lee, James C. Davis, Francisco Servant

Department of Electrical and Computer Engineering Faculty Publications

Regular expressions are used for diverse purposes, including input validation and firewalls. Unfortunately, they can also lead to a security vulnerability called ReDoS (Regular Expression Denial of Service), caused by a super-linear worst-case execution time during regex matching. Due to the severity and prevalence of ReDoS, past work proposed automatic tools to detect and fix regexes. Although these tools were evaluated in automatic experiments, their usability has not yet been studied; usability has not been a focus of prior work. Our insight is that the usability of existing tools to detect and fix regexes will improve if we complement them …


Observing Human Mobility Internationally During Covid-19, Shane Allcroft, Mohammed Metwaly, Zachery Berg, Isha Ghodgaonkar, Fischer Bordwell, Xinxin Zhao, Xinglei Liu, Jiahao Xu, Subhankar Chakraborty, Vishnu Banna, Akhil Chinnakotla, Abhinav Goel, Caleb Tung, Gore Kao, Wei Zakharov, David A. Shoham, George K. Thiruvathukal, Yung-Hsiang Lu Jan 2023

Observing Human Mobility Internationally During Covid-19, Shane Allcroft, Mohammed Metwaly, Zachery Berg, Isha Ghodgaonkar, Fischer Bordwell, Xinxin Zhao, Xinglei Liu, Jiahao Xu, Subhankar Chakraborty, Vishnu Banna, Akhil Chinnakotla, Abhinav Goel, Caleb Tung, Gore Kao, Wei Zakharov, David A. Shoham, George K. Thiruvathukal, Yung-Hsiang Lu

Computer Science: Faculty Publications and Other Works

This article analyzes visual data captured from five countries and three U.S. states to evaluate the effectiveness of lockdown policies for reducing the spread of COVID-19. The main challenge is the scale: nearly six million images are analyzed to observe how people respond to the policy changes.


Machine Learning Predictions Of Electricity Capacity, Marcus Harris, Elizabeth Kirby, Ameeta Agrawal, Rhitabrat Pokharel, Francis Puyleart, Martin Zwick Jan 2023

Machine Learning Predictions Of Electricity Capacity, Marcus Harris, Elizabeth Kirby, Ameeta Agrawal, Rhitabrat Pokharel, Francis Puyleart, Martin Zwick

Systems Science Faculty Publications and Presentations

This research applies machine learning methods to build predictive models of Net Load Imbalance for the Resource Sufficiency Flexible Ramping Requirement in the Western Energy Imbalance Market. Several methods are used in this research, including Reconstructability Analysis, developed in the systems community, and more well-known methods such as Bayesian Networks, Support Vector Regression, and Neural Networks. The aims of the research are to identify predictive variables and obtain a new stand-alone model that improves prediction accuracy and reduces the INC (ability to increase generation) and DEC (ability to decrease generation) Resource Sufficiency Requirements for Western Energy Imbalance Market participants. This …


Research@Smu: Sustainable Living, Singapore Management University Jan 2023

Research@Smu: Sustainable Living, Singapore Management University

Research Collection Office of Research & Tech Transfer

Sustainable Living is one of the three key priorities of the SMU 2025 Strategy, and the University is committed to develop it into an area of cross-disciplinary strength. The articles in this booklet highlight impactful sustainability research accomplishments at SMU, which spans five broad pillars: Sustainable Business Operations; Sustainable Finance and Impact Assessment; Sustainable Ageing and Wellness; Sustainable Urban Infrastructure; and Sustainable Agro-business and Food Consumption.

Contents:

Sustainable Business Operations

  • Managing the Load on Loading Bays
  • Going the Last-mile
  • Feeding a Growing World
  • Pooling the Benefits of Sharing a Ride

Sustainable Finance and Impact Assessment

  • When Going Green Becomes a …


Dynamic Function Learning Through Control Of Ensemble Systems, Wei Zhang, Vignesh Narayanan, Jr-Shin Li Jan 2023

Dynamic Function Learning Through Control Of Ensemble Systems, Wei Zhang, Vignesh Narayanan, Jr-Shin Li

Publications

Learning tasks involving function approximation are preva- lent in numerous domains of science and engineering. The underlying idea is to design a learning algorithm that gener- ates a sequence of functions converging to the desired target function with arbitrary accuracy by using the available data samples. In this paper, we present a novel interpretation of iterative function learning through the lens of ensemble dy- namical systems, with an emphasis on establishing the equiv- alence between convergence of function learning algorithms and asymptotic behavior of ensemble systems. In particular, given a set of observation data in a function learning task, we …


Reasoning About The Conant Gasket, M. Douglas Mcilroy Jan 2023

Reasoning About The Conant Gasket, M. Douglas Mcilroy

Computer Science Technical Reports

Previously conjectured properties of the Conant gasket, a particular non-periodic tiling of the non-negative integer grid, are proved using new recurrences. A slabwise periodicity property is identified and proved. Further fractal properties are conjectured.


Neighborhood Retail Amenities And Taxi Trip Behavior: A Natural Experiment In Singapore, Kwan Ok Lee, Shih-Fen Cheng Jan 2023

Neighborhood Retail Amenities And Taxi Trip Behavior: A Natural Experiment In Singapore, Kwan Ok Lee, Shih-Fen Cheng

Research Collection School Of Computing and Information Systems

While a small change in land use planning in existing neighborhoods may significantly reduce private vehicle trips, we do not have a great understanding of the magnitude of the project- and shock-based causal change in travel behaviors, especially for the retail purpose. We analyze the impact of newly developed malls on the retail trip behavior of nearby residents for shopping, dining or services. Using the difference-in-differences approach and big data from a major taxi company in Singapore, we find that households residing within 800 m from a new mall are significantly less likely to take taxis to other retail destinations …


Self-Omics: A Self-Supervised Learning Framework For Multi-Omics Cancer Data, Sayed Hashim, Karthik Nandakumar, Mohammad Yaqub Jan 2023

Self-Omics: A Self-Supervised Learning Framework For Multi-Omics Cancer Data, Sayed Hashim, Karthik Nandakumar, Mohammad Yaqub

Computer Vision Faculty Publications

We have gained access to vast amounts of multi-omics data thanks to Next Generation Sequencing. However, it is challenging to analyse this data due to its high dimensionality and much of it not being annotated. Lack of annotated data is a significant problem in machine learning, and Self-Supervised Learning (SSL) methods are typically used to deal with limited labelled data. However, there is a lack of studies that use SSL methods to exploit inter-omics relationships on unlabelled multi-omics data. In this work, we develop a novel and efficient pre-training paradigm that consists of various SSL components, including but not limited …


E-Learning Course Recommender System Using Collaborative Filtering Models, Kalyan Kumar Jena, Sourav Kumar Bhoi, Tushar Kanta Malik, Kshira Sagar Sahoo, N. Z. Jhanjhi, Sajal Bhatia Ed., Fathi Amsaad Jan 2023

E-Learning Course Recommender System Using Collaborative Filtering Models, Kalyan Kumar Jena, Sourav Kumar Bhoi, Tushar Kanta Malik, Kshira Sagar Sahoo, N. Z. Jhanjhi, Sajal Bhatia Ed., Fathi Amsaad

School of Computer Science & Engineering Faculty Publications

e-Learning is a sought-after option for learners during pandemic situations. In e-Learning platforms, there are many courses available, and the user needs to select the best option for them. Thus, recommender systems play an important role to provide better automation services to users in making course choices. It makes recommendations for users in selecting the desired option based on their preferences. This system can use machine intelligence (MI)-based techniques to carry out the recommendation mechanism. Based on the preferences and history, this system is able to know what the users like most. In this work, a recommender system is proposed …


Famaid: A Tool For Aiding People With Disability, Mohamad Maad, Ahmad Owaydate, Mohammad Kojok, Firas Aboudaher, Layal Abu Daher, May Itani Dec 2022

Famaid: A Tool For Aiding People With Disability, Mohamad Maad, Ahmad Owaydate, Mohammad Kojok, Firas Aboudaher, Layal Abu Daher, May Itani

BAU Journal - Science and Technology

People with disabilities suffer from discrimination and obstacles that restrict them from participating in society on an equal basis with others every day. They are deprived of their rights to be included in ordinary school systems and even in the work market. In the process of raising awareness, facilitating dailyroutines, and developing guidance, the idea of assisting such people with handy tools/software arose and was implemented in the FamAid tool. FamAid offers people with hearing disability the opportunity to be engaged in the society through many facilities. In this work, we implemented a web application that serves as a community …


Short Term Energy Consumption Forecasting Using Neural Basis Expansion Analysis For Interpretable Time Series, Abdul Khalique Shaikh, Amril Nazir, Imran Khan, Abdul Salam Shah Dec 2022

Short Term Energy Consumption Forecasting Using Neural Basis Expansion Analysis For Interpretable Time Series, Abdul Khalique Shaikh, Amril Nazir, Imran Khan, Abdul Salam Shah

All Works

Smart grids and smart homes are getting people's attention in the modern era of smart cities. The advancements of smart technologies and smart grids have created challenges related to energy efficiency and production according to the future demand of clients. Machine learning, specifically neural network-based methods, remained successful in energy consumption prediction, but still, there are gaps due to uncertainty in the data and limitations of the algorithms. Research published in the literature has used small datasets and profiles of primarily single users; therefore, models have difficulties when applied to large datasets with profiles of different customers. Thus, a smart …


Challenges And Measurements For Governance Of Modern Cyber Space Society, Pinghui Wang, Hongbin Pei, Junzhou Zhao, Tao Qin, Chao Shen, Dongliang Liu, Xiaohong Guan Dec 2022

Challenges And Measurements For Governance Of Modern Cyber Space Society, Pinghui Wang, Hongbin Pei, Junzhou Zhao, Tao Qin, Chao Shen, Dongliang Liu, Xiaohong Guan

Bulletin of Chinese Academy of Sciences (Chinese Version)

The rapid development of information technology has unprecedentedly created a prosperous cyber society and greatly enhanced productivity facilitated by social interaction. At the same time, many problems emerge in the cyber society, such as telecom fraud, privacy leakage, Internet pollution, and algorithmic discrimination. The problems bring new challenges to social order and security. In order to find the way of cyber society governance and promote the modernization of national governance, this paper first presents the analyses on the new problems encountered in the cyber society in three typical scenarios, i.e., identity governance, behavior governance, and algorithm governance, as well as …


Big Data Technology Enabling Legal Supervision, Qingjie Liu, Shuo Liu, Yirong Wu, Yueqiang Weng, Yihao Wen, Ming Li Dec 2022

Big Data Technology Enabling Legal Supervision, Qingjie Liu, Shuo Liu, Yirong Wu, Yueqiang Weng, Yihao Wen, Ming Li

Bulletin of Chinese Academy of Sciences (Chinese Version)

Legal supervision plays an important role in the national governance system and capacity. In the era of digital revolution, the rapid development of digital procuratorial work with big data legal supervision as the core promotes to reshape the legal supervision and governance system. In this study, the inherent need of legal supervision for active prosecution in the new era, and the innovative role of new public interest litigation in comprehensive social governance, are firstly analyzed. Then, the core meaning and reshaping role of big-data-enabling-legalsupervision and supervision-promoting-national-governance of digital prosecution are discussed. After summarizing the practical experiences and challenges of big …


Towards Parking Lot Occupancy Assessment Using Aerial Imagery And Computer Vision, John Jewell Dec 2022

Towards Parking Lot Occupancy Assessment Using Aerial Imagery And Computer Vision, John Jewell

Electronic Thesis and Dissertation Repository

Advances in Computer Vision and Aerial Imaging have enabled countless downstream applications. To this end, aerial imagery could be leveraged to analyze the usage of parking lots. This would enable retail centres to allocate space better and eliminate the parking oversupply problem. With this use case in mind, the proposed research introduces a novel framework for parking lot occupancy assessments. The framework consists of a pipeline of components that map a sequence of image sets spanning a parking lot at different time intervals to a parking lot turnover heatmap that encodes the frequency each parking stall was used. The pipeline …


Hybrid Life Cycles In Software Development, Eric Vincent Schoenborn Dec 2022

Hybrid Life Cycles In Software Development, Eric Vincent Schoenborn

Culminating Experience Projects

This project applied software specification gathering, architecture, work planning, and development to a real-world development effort for a local business. This project began with a feasibility meeting with the owner of Zeal Aerial Fitness. After feasibility was assessed the intended users, needed functionality, and expected user restrictions were identified with the stakeholders. A hybrid software lifecycle was selected to allow a focus on base functionality up front followed by an iterative development of expectations of the stakeholders. I was able to create various specification diagrams that express the end projects goals to both developers and non-tech individuals using a standard …


Defining Traffic Scenarios For The Visually Impaired, Judith Jakob, Kordula Kugele, József Tick Dec 2022

Defining Traffic Scenarios For The Visually Impaired, Judith Jakob, Kordula Kugele, József Tick

The Qualitative Report

For the development of a transfer concept of camera-based object detections from Advanced Driver Assistance Systems to the assistance of the visually impaired, we define relevant traffic scenarios and vision use cases by means of problem-centered interviews with four experts and ten members of the target group. We identify the six traffic scenarios: general orientation, navigating to an address, crossing a road, obstacle avoidance, boarding a bus, and at the train station clustered into the three categories: Orientation, Pedestrian, and Public Transport. Based on the data, we describe each traffic scenario and derive a summarizing table adapted from software engineering …


Folk Theories, Recommender Systems, And Human-Centered Explainable Artificial Intelligence (Hcxai), Michael Ridley Dec 2022

Folk Theories, Recommender Systems, And Human-Centered Explainable Artificial Intelligence (Hcxai), Michael Ridley

Electronic Thesis and Dissertation Repository

This study uses folk theories to enhance human-centered “explainable AI” (HCXAI). The complexity and opacity of machine learning has compelled the need for explainability. Consumer services like Amazon, Facebook, TikTok, and Spotify have resulted in machine learning becoming ubiquitous in the everyday lives of the non-expert, lay public. The following research questions inform this study: What are the folk theories of users that explain how a recommender system works? Is there a relationship between the folk theories of users and the principles of HCXAI that would facilitate the development of more transparent and explainable recommender systems? Using the Spotify music …


Advances In The Automatic Detection Of Optimization Opportunities In Computer Programs, Delaram Talaashrafi Dec 2022

Advances In The Automatic Detection Of Optimization Opportunities In Computer Programs, Delaram Talaashrafi

Electronic Thesis and Dissertation Repository

Massively parallel and heterogeneous systems together with their APIs have been used for various applications. To achieve high-performance software, the programmer should develop optimized algorithms to maximize the system’s resource utilization. However, designing such algorithms is challenging and time-consuming. Therefore, optimizing compilers are developed to take part in the programmer’s optimization burden. Developing effective optimizing compilers is an active area of research. Specifically, because loop nests are usually the hot spots in a program, their optimization has been the main subject of many optimization algorithms. This thesis aims to improve the scope and applicability of performance optimization algorithms used in …