Open Access. Powered by Scholars. Published by Universities.®

Medical Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Medical Molecular Biology

Molecular Mechanisms In Pathophysiology Of Mucopolysaccharidosis And Prospects For Innovative Therapy, Yasuhiko Ago, Estera Rintz, Krishna Sai Musini, Zhengyu Ma, Shunji Tomatsu Jan 2024

Molecular Mechanisms In Pathophysiology Of Mucopolysaccharidosis And Prospects For Innovative Therapy, Yasuhiko Ago, Estera Rintz, Krishna Sai Musini, Zhengyu Ma, Shunji Tomatsu

Department of Pediatrics Faculty Papers

Mucopolysaccharidoses (MPSs) are a group of inborn errors of the metabolism caused by a deficiency in the lysosomal enzymes required to break down molecules called glycosaminoglycans (GAGs). These GAGs accumulate over time in various tissues and disrupt multiple biological systems, including catabolism of other substances, autophagy, and mitochondrial function. These pathological changes ultimately increase oxidative stress and activate innate immunity and inflammation. We have described the pathophysiology of MPS and activated inflammation in this paper, starting with accumulating the primary storage materials, GAGs. At the initial stage of GAG accumulation, affected tissues/cells are reversibly affected but progress irreversibly to: (1) …


Bone Growth Induction In Mucopolysaccharidosis Iva Mouse, Estera Rintz, Angélica María Herreño-Pachón, Betul Celik, Fnu Nidhi, Shaukat Khan, Eliana Benincore-Flórez, Shunji Tomatsu Jun 2023

Bone Growth Induction In Mucopolysaccharidosis Iva Mouse, Estera Rintz, Angélica María Herreño-Pachón, Betul Celik, Fnu Nidhi, Shaukat Khan, Eliana Benincore-Flórez, Shunji Tomatsu

Department of Pediatrics Faculty Papers

Mucopolysaccharidosis IVA (MPS IVA; Morquio A syndrome) is caused by a deficiency of the N-acetylgalactosamine-6-sulfate-sulfatase (GALNS) enzyme, leading to the accumulation of glycosaminoglycans (GAG), keratan sulfate (KS) and chondroitin-6-sulfate (C6S), mainly in cartilage and bone. This lysosomal storage disorder (LSD) is characterized by severe systemic skeletal dysplasia. To this date, none of the treatment options for the MPS IVA patients correct bone pathology. Enzyme replacement therapy with elosulfase alpha provides a limited impact on bone growth and skeletal lesions in MPS IVA patients. To improve bone pathology, we propose a novel gene therapy with a small peptide as a growth-promoting …


Promoter Considerations In The Design Of Lentiviral Vectors For Use In Treating Lysosomal Storage Diseases, Estera Rintz, Takashi Higuchi, Hiroshi Kobayashi, Deni S Galileo, Grzegorz Wegrzyn, Shunji Tomatsu Nov 2021

Promoter Considerations In The Design Of Lentiviral Vectors For Use In Treating Lysosomal Storage Diseases, Estera Rintz, Takashi Higuchi, Hiroshi Kobayashi, Deni S Galileo, Grzegorz Wegrzyn, Shunji Tomatsu

Department of Pediatrics Faculty Papers

More than 50 lysosomal storage diseases (LSDs) are associated with lysosomal dysfunctions with the frequency of 1:5,000 live births. As a result of missing enzyme activity, the lysosome dysfunction accumulates undegraded or partially degraded molecules, affecting the entire body. Most of them are life-threatening diseases where patients could die within the first or second decade of life. Approximately 20 LSDs have the approved treatments, which do not provide the cure for the disorder. Therefore, the delivery of missing genes through gene therapy is a promising approach for LSDs. Over the years, ex vivo lentiviral-mediated gene therapy for LSDs has been …


Development Of Substrate Degradation Enzyme Therapy For Mucopolysaccharidosis Iva Murine Model., Kazuki Sawamoto, Shunji Tomatsu Aug 2019

Development Of Substrate Degradation Enzyme Therapy For Mucopolysaccharidosis Iva Murine Model., Kazuki Sawamoto, Shunji Tomatsu

Department of Pediatrics Faculty Papers

Mucopolysaccharidosis IVA (MPS IVA) is caused by a deficiency of the lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Conventional enzyme replacement therapy (ERT) is approved for MPS IVA. However, the fact that the infused enzyme cannot penetrate avascular lesions in cartilage leads to minimal impact on the bone lesion. Moreover, short half-life, high cost, instability, and narrow optimal pH range remain unmet challenges in ERT. Thermostable keratanase, endo-β-N-acetylglucosaminidase, has a unique character of a wide optimal pH range of pH 5.0-7.0. We hypothesized that this endoglycosidase degrades keratan sulfate (KS) polymer in circulating blood and, therefore, ameliorates the accumulation of KS in …


Extracellular Interactions Between Fibulins And Transforming Growth Factor (Tgf)-Β In Physiological And Pathological Conditions., Takeshi Tsuda Sep 2018

Extracellular Interactions Between Fibulins And Transforming Growth Factor (Tgf)-Β In Physiological And Pathological Conditions., Takeshi Tsuda

Department of Pediatrics Faculty Papers

Transforming growth factor (TGF)-β is a multifunctional peptide growth factor that has a vital role in the regulation of cell growth, differentiation, inflammation, and repair in a variety of tissues, and its dysregulation mediates a number of pathological conditions including fibrotic disorders, chronic inflammation, cardiovascular diseases, and cancer progression. Regulation of TGF-β signaling is multifold, but one critical site of regulation is via interaction with certain extracellular matrix (ECM) microenvironments, as TGF-β is primarily secreted as a biologically inactive form sequestrated into ECM. Several ECM proteins are known to modulate TGF-β signaling via cell⁻matrix interactions, including thrombospondins, SPARC (Secreted Protein …