Open Access. Powered by Scholars. Published by Universities.®

Medical Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Medical Molecular Biology

Adipocytes And Innate Immunity In Systemic Sclerosis, Nancy Wareing May 2023

Adipocytes And Innate Immunity In Systemic Sclerosis, Nancy Wareing

Dissertations & Theses (Open Access)

Systemic sclerosis (SSc; scleroderma) is a chronic systemic autoimmune and connective tissue disorder characterized by vasculopathy, autoimmune phenomena, and widespread fibrosis. Skin thickening and tightening is the cardinal feature of SSc and is responsible, in part, for the considerable morbidity of this disease. There are currently no targeted treatments for skin manifestations in SSc, primarily due to our fragmented understanding of its pathophysiologic mechanisms. In PART I, we report a previously unappreciated link between aberrant expression of the developmental gene sine oculis homeobox homolog 1 (SIX1) in skin-associated adipocytes in SSc skin and the early loss of dermal white adipose …


The Implementation Of Exercise For Chronic Kidney Disease And Dialysis Patients, Syed Ahmad Rizvi Apr 2020

The Implementation Of Exercise For Chronic Kidney Disease And Dialysis Patients, Syed Ahmad Rizvi

Honors College Theses

While commonly known to be the organ that helps with urine production within the human body, the kidney plays one of the most crucial roles in maintaining homeostasis. When establishing all of the roles the kidney has on keeping humans healthy, there is the question of how does the body cope when a patient is diagnosed with kidney failure. One of the more common treatment options that allows the body to continue to function without a kidney is by beginning a patient on a form of dialysis. However, as with any treatment, there will always be a list of side …


Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi Patel May 2019

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi Patel

Honors Scholar Theses

Background: Reconstruction of bone fractures and defects remains a big challenge in orthopedic surgery. While regenerative engineering has advanced the field greatly using a combination of biomaterial scaffolds and stem cells, one matter of difficulty is inducing osteogenesis in these cells. Recent works have shown electricity’s ability to promote osteogenesis in stem cell lines when seeded in bone scaffolds; however, typical electrical stimulators are either (a) externally housed and require overcomplex percutaneous wires be connected to the implanted scaffold or (b) implanted non-degradable devices which contain toxic batteries and require invasive removal surgeries.

Objective: Here, we establish a biodegradable, piezoelectric …


Identifying Kif Subtype That Mediates Axonal Targeting Of Kv7 Channels, Allison Houghton, Jennifer Walters, Mary Hong, Dhruv Joshi, Hee Jung Chung Jul 2018

Identifying Kif Subtype That Mediates Axonal Targeting Of Kv7 Channels, Allison Houghton, Jennifer Walters, Mary Hong, Dhruv Joshi, Hee Jung Chung

PRECS 2018

Early-onset Benign Familial Neonatal Epilepsy (BFNE) and Epileptic Encephalopathy (EE), are associated with mutations in neuronal KCNQ/Kv7 channel subunits Kv7.2 and Kv7.3. Kv7 channels are voltage-dependent potassium channels. Enriched at the axonal plasma membrane, they pump potassium ions out of the neurons and inhibit repetitive or burst firing of action potentials. A single neuronal Kv7 channel is a heterotetramer composed of two Kv7.2 and two Kv7.3 subunits. BFNE and EE mutations in Kv7.2 and Kv7.3 lead to decreased surface expression along the axon, which means less potassium ions are moved across the axonal membrane where action potentials are generated and …


Loss Of Marv1 Promotes Chop Signaling In Mouse Liver, Shad Anthony Mitchell Jul 2018

Loss Of Marv1 Promotes Chop Signaling In Mouse Liver, Shad Anthony Mitchell

Graduate School of Biomedical Sciences Theses and Dissertations

Metabolic syndrome (MetS) is a term used to define a set of metabolic diseases: obesity, type 2 diabetes (T2D), hyperlipidemia, hypertension, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic hepatosteatosis (NASH). Those with MetS have a higher incidence of cardiovascular disease and stroke. Current drug treatments for MetS treat the individual pathologies associated with the diseases, rather than directly targeting MetS as a whole. We hypothesize that the inhibition of a ubiquitous lipid transporter known as ARV1 can improve pathologies associated with MetS. To test this hypothesis, we utilized liver tissue from mARV1 knockout mice fed a high-fat diet and examined …


Till Death Do Us Part: The Marriage Of Autophagy And Apoptosis., Katrina F Cooper May 2018

Till Death Do Us Part: The Marriage Of Autophagy And Apoptosis., Katrina F Cooper

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Autophagy is a widely conserved catabolic process that is necessary for maintaining cellular homeostasis under normal physiological conditions and driving the cell to switch back to this status quo under times of starvation, hypoxia, and oxidative stress. The potential similarities and differences between basal autophagy and stimulus-induced autophagy are still largely unknown. Both act by clearing aberrant or unnecessary cytoplasmic material, such as misfolded proteins, supernumerary and defective organelles. The relationship between reactive oxygen species (ROS) and autophagy is complex. Cellular ROS is predominantly derived from mitochondria. Autophagy is triggered by this event, and by clearing the defective organelles effectively, …


A Proposal To Test The Effects Of Factor Ecat1 On Pluripotency, From Reprogramming To Differentiation Of Human Somatic Cells, Vritti R. Goel Jan 2012

A Proposal To Test The Effects Of Factor Ecat1 On Pluripotency, From Reprogramming To Differentiation Of Human Somatic Cells, Vritti R. Goel

CMC Senior Theses

The field of stem cell research has been growing more because of the interest in using stem cells to cure diseases and heal injuries. Human embryonic stem cells, because of the controversy surrounding them—and subsequently the difficulties in acquiring samples of the existing aging cell lines—can only be used in limited capacities. While the development of induced pluripotent stem cells in the last decade has allowed the field to progress closer to medical treatments, the low efficiency of reprogramming a somatic cell to a pluripotent state, and the vast molecular and genomic differences between human embryonic stem cells and human …


Ischemia Impairs Vasodilation In Skeletal Muscle Resistance Artery, Kyle Remington Struthers Jun 2011

Ischemia Impairs Vasodilation In Skeletal Muscle Resistance Artery, Kyle Remington Struthers

Master's Theses

Functional vasodilation in arterioles is impaired with chronic ischemia. We sought to examine the impact of chronic ischemia and age on skeletal muscle resistance artery function. To examine the impact of chronic ischemia, the femoral artery was resected from young (2-3mo) and adult (6-7mo) mice and the profunda femoris artery diameter was measured at rest and following gracilis muscle contraction 14 days later using intravital microscopy. Functional vasodilation was significantly impaired in ischemic mice (14.4±4.6% vs. 137.8±14.3%, p<0.0001 n=8) and non-ischemic adult mice (103.0±9.4% vs. 137.8±14.3%, p=0.05 n=10). In order to analyze the cellular mechanisms of the impairment, a protocol was developed to apply pharmacological agents to the experimental preparation while maintaining tissue homeostasis. Endothelial and smooth muscle dependent vasodilation were impaired with ischemia, 39.6 ± 13.6% vs. 80.5 ± 11.4% and 43.0 ± 11.7% vs. 85.1 ± 10.5%, respectively. From this data, it can be supported that smooth muscle dysfunction is the reason for the observed impairment in arterial vasodilation.