Open Access. Powered by Scholars. Published by Universities.®

Medical Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Medical Molecular Biology

Regeneration Of Neurons In Human Brain Tissue; A Revolutionary Concept With Therapeutic Potential, Mackenzie R. Dunn Apr 2023

Regeneration Of Neurons In Human Brain Tissue; A Revolutionary Concept With Therapeutic Potential, Mackenzie R. Dunn

Other Undergraduate Research

There is current research to suggest that endogenous neuronal regeneration, exogenous neuronal stem cell transplantation and glial cell reprogramming could be prospective therapeutic treatments for neurodegeneration and traumatic injury. With these conditions, there is significant brain atrophy, loss of neurons and loss of synaptic connections which can have devastating effects on executive functioning, cognition, learning and memory. This review will examine these modern approaches to adult neurogenesis, and assess the viable mechanisms and future outlook of these three therapies for neurological regenerative medicine.


Effect Of Stretch And Release On Myofascial Stem Cell Function In Vitro: A Putative Model To Understand The Molecular Benefits Of The Myofascial Release (Mfr) Technique, Ben Smith, Shahn Notta, Debasis Mondal Jan 2023

Effect Of Stretch And Release On Myofascial Stem Cell Function In Vitro: A Putative Model To Understand The Molecular Benefits Of The Myofascial Release (Mfr) Technique, Ben Smith, Shahn Notta, Debasis Mondal

Research Day

Despite the beneficial effects of osteopathic manipulative techniques (OMT), there is a lack of in vitro models to understand the molecular mechanisms associated with these time-tested therapies. The Myofascial Release (MFR) technique is a non-invasive approach that involves passive stretching, hold and release, of the soft tissue to achieve myofascial homeostasis. Tissue-resident mesenchymal stem cells (MSC) can regulate the myofascial microenvironment by altering their secreted factors following stretch and release. Therefore, we initiated studies to develop an in vitro model to investigate the possible effects of stretch and release on MSC function, i.e. proliferation and differentiation capabilities, and changes in …


The Implementation Of Exercise For Chronic Kidney Disease And Dialysis Patients, Syed Ahmad Rizvi Apr 2020

The Implementation Of Exercise For Chronic Kidney Disease And Dialysis Patients, Syed Ahmad Rizvi

Honors College Theses

While commonly known to be the organ that helps with urine production within the human body, the kidney plays one of the most crucial roles in maintaining homeostasis. When establishing all of the roles the kidney has on keeping humans healthy, there is the question of how does the body cope when a patient is diagnosed with kidney failure. One of the more common treatment options that allows the body to continue to function without a kidney is by beginning a patient on a form of dialysis. However, as with any treatment, there will always be a list of side …


Determining The Protective Effects Of Quercetin Against Cadmium Toxicity In Human Embryonic Kidney Cells, Caroline N. Smith Apr 2017

Determining The Protective Effects Of Quercetin Against Cadmium Toxicity In Human Embryonic Kidney Cells, Caroline N. Smith

Undergraduate Theses

Cadmium is a toxic industrial and environmental pollutant found in groundwater, air, soils, food and cigarettes. Chronic intake of low levels of cadmium has been shown to result in renal dysfunction due to cell death which can occur via apoptosis as well as necrosis. Previous studies have shown that plant extracts containing quercetin, a flavonoid found in many fruits and vegetables, protect against cadmium toxicity in rat liver hepatocytes. To determine if quercetin may have a protective effect in a cadmium-treated human embryonic kidney cell line, HEK-293 cells were treated using concentrations of cadmium chloride from 10 to 50 μM …


Microrna-186 And Metastatic Prostate Cancer., Dominique Zilpha Jones May 2016

Microrna-186 And Metastatic Prostate Cancer., Dominique Zilpha Jones

Electronic Theses and Dissertations

MicroRNA (miR) dysregulation alters cancer-associated gene expression, which contributes to cancer pathogenesis. For example, miR-186 over expression lead to enhanced proliferation and migration in pancreatic cancer cell models. However, the role of miR-186 in prostate cancer (PCa) remains controversial. Previously, miR-186-5p was up-regulated in PCa patient serum (stage III/IV) compared to controls. Furthermore, miR-186-5p was up-regulated in metastatic PCa (PC-3, MDA PCa 2b, LNCaP) relative to normal prostate epithelial cells (RWPE1). We hypothesized miR-186 inhibition will reduce aggressive PCa using metastatic cell models. To test this, we evaluated whether miR-186-5p inhibition would reduce aggressive PCa behavior and overexpression induce malignant …


Characterizing The Response Of Multidrug-Resistant Klebsiella Pneumoniae Species To The Application Of A Phage Cocktail, Steven Liu Jun 2014

Characterizing The Response Of Multidrug-Resistant Klebsiella Pneumoniae Species To The Application Of A Phage Cocktail, Steven Liu

Symposium

Project Summary: The application of bacteriophages to treat bacterial infections is known as phage therapy, which takes advantage of bacteriophage’s natural ability to infect and lyse bacterial hosts. Phages have been shaped by billions of years of evolution to be highly specialized deliverers of bactericidal agents to the cytoplasm of their target bacteria. Ever since discovery of bacteriophages in 1915, phage therapy was recognized as a potentially powerful tool for eliminating bacterial infections. The effectiveness of phage therapy can be increased by creating a mixture of multiple phages to target a wider variety of bacterial strains. Furthermore, phage therapy has …


Gene Alterations By Peroxisome Proliferator-Activated Receptor Gamma Agonists In Human Colorectal Cancer Cells, Maria Cekanova, X Li, J Yuan, K B. Kim, Seung J. Baek Apr 2008

Gene Alterations By Peroxisome Proliferator-Activated Receptor Gamma Agonists In Human Colorectal Cancer Cells, Maria Cekanova, X Li, J Yuan, K B. Kim, Seung J. Baek

Faculty Publications and Other Works -- Biochemistry, Cellular and Molecular Biology

The peroxisome proliferator-activated receptor gamma (PPARgamma) is a nuclear transcription factor that controls the genes involved in metabolism and carcinogenesis. In the present study, we examined the alteration of gene expression in HCT-116 human colorectal cancer cells by PPARgamma agonists: MCC-555 (5 microM), rosiglitazone (5 microM), and 15-deoxy-Delta12,14-prostaglandin J2 (1 microM). The long-oligo microarray data revealed a list of target genes commonly induced (307 genes) and repressed (32 genes) by tested PPARgamma agonists. These genes were analyzed by Onto-Express software and KEGG pathway analysis and revealed that PPARgamma agonists are involved in cell proliferation, focal adhesion, and several signaling pathways. …


Gene Alterations By Peroxisome Proliferator-Activated Receptor Gamma Agonists In Human Colorectal Cancer Cells, Maria Cekanova, J Yuan, X Li, K B. Kim, Seung J. Baek Apr 2008

Gene Alterations By Peroxisome Proliferator-Activated Receptor Gamma Agonists In Human Colorectal Cancer Cells, Maria Cekanova, J Yuan, X Li, K B. Kim, Seung J. Baek

Maria Cekanova MS, RNDr, PhD

The peroxisome proliferator-activated receptor gamma (PPARgamma) is a nuclear transcription factor that controls the genes involved in metabolism and carcinogenesis. In the present study, we examined the alteration of gene expression in HCT-116 human colorectal cancer cells by PPARgamma agonists: MCC-555 (5 microM), rosiglitazone (5 microM), and 15-deoxy-Delta12,14-prostaglandin J2 (1 microM). The long-oligo microarray data revealed a list of target genes commonly induced (307 genes) and repressed (32 genes) by tested PPARgamma agonists. These genes were analyzed by Onto-Express software and KEGG pathway analysis and revealed that PPARgamma agonists are involved in cell proliferation, focal adhesion, and several signaling pathways. …