Open Access. Powered by Scholars. Published by Universities.®

Nervous System Diseases Commons

Open Access. Powered by Scholars. Published by Universities.®

Laboratory and Basic Science Research

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 24 of 24

Full-Text Articles in Nervous System Diseases

A Preliminary Report On The Role Of Lipoxin A4 In Reinstating The Blood-Brain Barrier Integrity In A Rodent Model Of Acute Inflammation With Impaired Cerebrovasculature, Minjal Patel, Shruti Varshney, Ananya Nethikunta, George G. Godsey, Mary C. Kosciuk, Ana Rodriguez, Bernd Spur, Kingsley Yin, Randel L. Swanson, Venkat Venkataraman, Robert G. Nagele, Nimish Acharya May 2024

A Preliminary Report On The Role Of Lipoxin A4 In Reinstating The Blood-Brain Barrier Integrity In A Rodent Model Of Acute Inflammation With Impaired Cerebrovasculature, Minjal Patel, Shruti Varshney, Ananya Nethikunta, George G. Godsey, Mary C. Kosciuk, Ana Rodriguez, Bernd Spur, Kingsley Yin, Randel L. Swanson, Venkat Venkataraman, Robert G. Nagele, Nimish Acharya

Rowan-Virtua Research Day

Background: The blood-brain barrier (BBB) is responsible for maintaining brain homeostasis and ultimately proper neuronal function. Disruption of the BBB, leading to increased BBB permeability, has been reported in several neurodegenerative diseases, including Alzheimer’s disease (AD) and traumatic brain injury (TBI). Lipoxins (LXs) are a class of arachidonate-derived eicosanoids, which are a class of specialized pro-resolving lipid mediators (SPMs). SPMs are known to inhibit immune response through inhibition of cellular infiltration, downregulation of pro-inflammatory mediators and upregulation of anti-inflammatory mediators. Hence, LXs are recognized as “breaking signals” in the inflammatory process. One form of LXs, Lipoxin A4 (LXA4) …


Extravasated Brain-Reactive Autoantibodies Perturb Neuronal Surface Protein Expression In Alzheimer's Pathology, Wardah Bajwa, Mary Kosciuk, Randel L. Swanson, Anuradha Krishnan, Venkat Venkataraman, Robert Nagele, Nimish Acharya May 2023

Extravasated Brain-Reactive Autoantibodies Perturb Neuronal Surface Protein Expression In Alzheimer's Pathology, Wardah Bajwa, Mary Kosciuk, Randel L. Swanson, Anuradha Krishnan, Venkat Venkataraman, Robert Nagele, Nimish Acharya

Rowan-Virtua Research Day

Background: Increased blood-brain barrier (BBB) permeability is reported in both the neuropathological and in vivo studies in both Alzheimer’s Disease (AD) and age matched cognitively normal, no cognitive impairment (NCI), subjects. Impaired BBB allows various vascular components such as immunoglobulin G (IgG) to extravasate into the brain and specifically bind to various neuronal surface proteins (NSP), also known as brain reactive autoantibodies (BrABs). This interaction is predicted to further enhance deposition of amyloid plaques.

Hypothesis: Interaction between extravasated BrABs and its cognate NSPs lower the expression of that NSPs in AD patients.

Methods: We selected Western blotting technique to study …


Swallowing Disrupts Tongue-Jaw Coordination During Chewing In A Rat Model Of Parkinson's Disease, Meejan Palhang, N. Charles, Francois Gould May 2023

Swallowing Disrupts Tongue-Jaw Coordination During Chewing In A Rat Model Of Parkinson's Disease, Meejan Palhang, N. Charles, Francois Gould

Rowan-Virtua Research Day

The primary motor symptoms of Parkinson’s disease, including bradykinesia, rigidity, and tremor, are associated with difficulties regulating transitions between motor behaviors due to basal ganglia dysfunction. Chewing and swallowing, which are disordered in most patients with Parkinson’s disease, are two complex motor behaviors which overlap in time and share some neuromuscular components. The objective of this study is to identify how Parkinson’s disease affects the coordination of chewing and swallowing. We hypothesize that as a result of impaired regulation of shift between motor patterns, chewing cycles that occur with a swallow will be more affected that chewing cycles occurring in …


Differential Degeneration Of Neurons In A Mouse Model Of Canavan Disease, Vibha Chauhan, Quy Nguyen, Jeremy Francis, Paola Leone May 2023

Differential Degeneration Of Neurons In A Mouse Model Of Canavan Disease, Vibha Chauhan, Quy Nguyen, Jeremy Francis, Paola Leone

Rowan-Virtua Research Day

Canavan disease (CD) is an inherited leukodystrophy caused by inactivating mutations to the glial enzyme aspartoacylase (ASPA). ASPA catabolizes neuronal N-acetylaspartate (NAA) into free acetate and aspartate and loss of this function results in the chronic elevation of non-catabolized NAA and the failure of developmental myelination. Elevated NAA is thought to cause damage to myelin and myelin-producing cells (oligodendrocytes, but the viability of neurons in CD is relatively unexplored. We compare here the progressive degeneration of neurons in two regions of the CD mouse brain, the thalamus and the cortex, distinguished by differing degrees of vacuolation, and show that the …


Accelerometry-Based Analysis Of Postural Sway In Parkinson's Disease Patients With Levodopa-Induced Dyskinesia, Chandler Brock Mar 2023

Accelerometry-Based Analysis Of Postural Sway In Parkinson's Disease Patients With Levodopa-Induced Dyskinesia, Chandler Brock

UNO Student Research and Creative Activity Fair

Parkinson’s disease (PD) is a progressive neurodegenerative disorder, with patient numbers projected to double to 12 million in the next 20 years. Levodopa-induced dyskinesia (LID) is a major problem associated with the long-term use of levodopa for symptomatic treatment of PD. These involuntary movements can become disabling and may interfere with quality of life. Our prior research showed that PD w/ LID were less stable while standing (i.e., increased postural sway) and had a higher incidence of falls. The aim of this study is to determine if postural sway properties are altered by LID via decomposing the sway signal. We …


Impact Forces And Patterns Of Axonal Injury Differ Between Two Models Of Tbi, Edward Lai, David M Devilbiss May 2022

Impact Forces And Patterns Of Axonal Injury Differ Between Two Models Of Tbi, Edward Lai, David M Devilbiss

Rowan-Virtua Research Day

Traumatic brain injury (TBI) affects approximately 3.8 million Americans a year and results in complex neuropathological and neurocognitive sequelae. Animal models of TBI attempt to replicate the impact forces and pathology of injury in humans. However, in these models, the forces generated at the time of impact are poorly understood. Nonetheless, a variety of shear and strain forces generated at the time of impact can produce diffuse axonal injury. Injury to axons and neurons across a variety of brain regions resulting from axonal injury underlies the cognitive and behavioral impairments observed after TBI. Three critical brain regions, the corpus callosum …


Cyclin C Is Sufficient For Myoblast Differentiation-Induced Mitochondrial Fragmentation, Alicia N. Campbell, Randy Strich May 2022

Cyclin C Is Sufficient For Myoblast Differentiation-Induced Mitochondrial Fragmentation, Alicia N. Campbell, Randy Strich

Rowan-Virtua Research Day

One of the largest and most dynamic tissues in the body, skeletal muscle, requires constant regeneration and upkeep. Dysregulation of this regeneration process has been implicated in many neuromuscular diseases and myotonic dystrophies. Regeneration requires the differentiation of myogenic lineages including exiting the cell cycle, gene expression changes, and fusing of myoblasts into multinucleate myotubes. Part of this reconstruction requires the breakdown and repopulation of mitochondrial networks. At the early onset of myoblast differentiation, there is an upregulation of dynamin-related protein, Drp1, and an increase in mitophagy mediated by sequestosome (SQSTM1) removal of mitochondria.

Previously, our lab has shown that …


Understanding Exosomal Extracellular Vesicles And Morphine In The Neuropathology Of Human Immunodeficiency Virus And Differential Zika Virus Strain-Associated Pathology, Allen Caobi Apr 2022

Understanding Exosomal Extracellular Vesicles And Morphine In The Neuropathology Of Human Immunodeficiency Virus And Differential Zika Virus Strain-Associated Pathology, Allen Caobi

FIU Electronic Theses and Dissertations

Exosomal Extracellular Vesicles (xEVs), integral to intercellular communication and regulation of immune responses, have functional effects based on their contents, which they transport to neighboring cells. However, in the context of infection, EV cargo can be modulated, by either infected or uninfected cells. We hypothesize that CNS-associated neuropathology, is partially, due to the cargo transported by the exosomes. We theorize that the cargo released from infected cell-derived xEVs may either facilitate or inhibit viral neuropathogenicity. Here we investigated xEVs in the case of two neurotropic viruses, Zika virus (ZIKV) and Human Immunodeficiency Virus (HIV). The hallmark characteristic of ZIKV-infection is …


Mitochondrial Aspects Of Neuronal Pathology In Triple-Transgenic Alzheimer’S Disease Mice, John Zachary Cavendish Jan 2021

Mitochondrial Aspects Of Neuronal Pathology In Triple-Transgenic Alzheimer’S Disease Mice, John Zachary Cavendish

Graduate Theses, Dissertations, and Problem Reports

Alzheimer’s disease (AD) is a fatal, progressive neurodegenerative disease afflicting millions of people in the United States alone and is the only one of the top leading causes of morbidity and mortality with no effective disease-modifying therapies. It is the most common form of dementia, affecting one in three people over the age of 85. While the hallmarks of the disease include accumulation of beta-amyloid-based extracellular plaques and hyperphosphorylated tau-based intracellular neurofibrillary tangles, treatment strategies centered on removing or mitigating these components of AD have all failed in humans. Mitochondrial dysfunction has been increasingly recognized as an early and consistent …


An Approach For The In-Vivo Characterization Of Brain And Heart Inflammation In Duchenne Muscular Dystrophy, Joanne Tang Sep 2020

An Approach For The In-Vivo Characterization Of Brain And Heart Inflammation In Duchenne Muscular Dystrophy, Joanne Tang

Electronic Thesis and Dissertation Repository

Duchenne muscular dystrophy (DMD) is a neuromuscular disorder caused by dystrophin loss—notably within muscles and CNS neurons. DMD presents as cognitive weakness, progressive skeletal and cardiac muscle degeneration until pre-mature death from cardiac or respiratory failure. Innovative therapies improved life expectancy, but this is accompanied by increased late-onset heart failure and emergent cognitive degeneration. Thus, there is an increasing need to both better understand and track disease pathophysiology in the dystrophic heart and brain prior to onset of severe degenerative symptoms. Chronic inflammation is strongly associated with skeletal and cardiac muscle degeneration, however chronic neuroinflammation’s role is largely unknown in …


The Current Neuroscientific Understanding Of Alzheimer's Disease, Rachel A. Brandes May 2020

The Current Neuroscientific Understanding Of Alzheimer's Disease, Rachel A. Brandes

Pursuit - The Journal of Undergraduate Research at The University of Tennessee

Alzheimer’s disease is a degenerative neurological illness characterized by the deterioration of brain regions implicated in memory and cognitive function. While researchers have yet to find a cure or effective treatment, they have gained a better understanding of its pathology and development. Through years of neuroscience research, scientists have discovered much of what happens in the brain during Alzheimer’s disease onset and how this causes its symptoms; many hypotheses regarding this aspect of the illness involve temporal lobe atrophy, neurofibrillary tangles, and amyloid plaques. Although Alzheimer’s disease affects millions of people every day, it seems that most are unaware of …


The Master Synaptic Regulator: Activity Regulated Cytoskeleton Associated Protein, Arc, In Normal Aging And Diseases With Cognitive Impairment, Amber Khan Feb 2019

The Master Synaptic Regulator: Activity Regulated Cytoskeleton Associated Protein, Arc, In Normal Aging And Diseases With Cognitive Impairment, Amber Khan

Dissertations, Theses, and Capstone Projects

Alzheimer’s disease (AD) is a progressive neurodegenerative disease with complex underlying pathogenic mechanisms. Epidemiological studies have forecasted that in the next 3 decades, the number of AD cases will rise to epidemic proportions with enormous medical, emotional and financial burdens impacting individuals affected and society. Among many risk factors for AD, advancing age is clearly essential and necessary. Revelation of molecular changes in synaptic activities leading to the prodromal, mild cognitive impairment (MCI) stage may help illuminate the course of pathogenic progression and its cause-effect relationship with various targets thereby enabling target-driven disease-modifying therapeutic agents for AD.

Activity-regulated cytoskeleton-associated (Arc) …


Mechanisms Of Trinucleotide Repeat Instability During Dna Synthesis, Kara Y. Chan Jan 2019

Mechanisms Of Trinucleotide Repeat Instability During Dna Synthesis, Kara Y. Chan

Theses and Dissertations--Toxicology and Cancer Biology

Genomic instability, in the form of gene mutations, insertions/deletions, and gene amplifications, is one of the hallmarks in many types of cancers and other inheritable genetic disorders. Trinucleotide repeat (TNR) disorders, such as Huntington’s disease (HD) and Myotonic dystrophy (DM) can be inherited and repeats may be extended through subsequent generations. However, it is not clear how the CAG repeats expand through generations in HD. Two possible repeat expansion mechanisms include: 1) polymerase mediated repeat extension; 2) persistent TNR hairpin structure formation persisting in the genome resulting in expansion after subsequent cell division. Recent in vitro studies suggested that a …


Behavioral Insights Into Nociceptor Function: A Systematic Approach To Understanding Postsurgical And Neuropathic Pain Mechanisms In Rats, Max Odem Dec 2018

Behavioral Insights Into Nociceptor Function: A Systematic Approach To Understanding Postsurgical And Neuropathic Pain Mechanisms In Rats, Max Odem

Dissertations & Theses (Open Access)

Postsurgical and neuropathic pain are each clinically common, and often associated with ongoing pain. Ongoing pain has been linked to ongoing activity (OA) in human C-fiber nociceptors. Preclinical studies using rodent neuropathic models have concentrated on allodynia driven by OA generated in non-nociceptive Aβ fibers, but little attention has been paid to postsurgical pain in sham controls or to C-fiber nociceptor OA promoting ongoing pain.

Operant assays that reveal negative motivational and cognitive aspects of voluntary pain-related behavior may be particularly sensitive to pain-related alterations. In the mechanical conflict (MC) test, rodents can freely choose to escape from a brightly …


Brain Energy Homeostasis And The Regulation Of N-Acetyl-Aspartate Metabolism In Development And Disease, Samantha Zaroff Dec 2017

Brain Energy Homeostasis And The Regulation Of N-Acetyl-Aspartate Metabolism In Development And Disease, Samantha Zaroff

Graduate School of Biomedical Sciences Theses and Dissertations

N-acetylaspartate (NAA) is a non-invasive clinical marker of neuronal metabolic integrity because of its strong proton magnetic resonance spectroscopy (H-MRS) peak and direct correlation with energetic integrity. Specifically, NAA is used to track the progression of neurodegenerative diseases due to the characteristic reduction of whole brain levels of NAA which occur simultaneously with reduced glucose utilization and mitochondrial dysfunction, but prior to the onset of disease specific pathology. However, NAA will also significantly increase simultaneously with energetic integrity during periods of recovery or remission in applicable disorders, such as traumatic brain injuries. Unfortunately, it remains enigmatic exactly why NAA is …


Rat Hind Limb Nociceptive Withdrawal Response To Heat And Mechanical Stimuli Depends On Initial Position Of The Paw But Not Stimulus Location, Giavanna Verdi May 2017

Rat Hind Limb Nociceptive Withdrawal Response To Heat And Mechanical Stimuli Depends On Initial Position Of The Paw But Not Stimulus Location, Giavanna Verdi

Senior Honors Projects, 2010-2019

Mammals rapidly withdraw their hind limb in response to noxious stimulation, which is a protective movement known as the nociceptive withdrawal response (NWR). The NWR has been previously studied in spinalized, decerebrated and anesthetized non-human and human mammals; however, there is minimal information on the NWR in intact, unanesthetized non-human mammals.

The first specific aim was to identify the factors that determine the direction and magnitude of the NWR in intact, unanesthetized rats. Based on previous studies, we hypothesized that the location of stimulation and the initial position of the paw preceding the NWR will influence the direction and magnitude …


The Role Of The Expansion Segment 7 Of 25s Rrna During Oxidative Stress In Saccharomyces Cerevisiae, Ethan Gardner May 2017

The Role Of The Expansion Segment 7 Of 25s Rrna During Oxidative Stress In Saccharomyces Cerevisiae, Ethan Gardner

Graduate School of Biomedical Sciences Theses and Dissertations

Translation is an essential process for protein expression in both eukaryotes and prokaryotes. Like any cellular process, translational factors are prone to damage when the cell is under stress. One common stressor that nearly all cells may experience is abnormal levels of reactive oxygen species (ROS). Damage caused by ROS has been associated with disease ranging from neurodegenerative impairments, to the aging process of cells. These oxygen radicals are capable of damaging a litany of molecules including nucleic acids, and molecular factors involved in translation. It has been shown that tRNA can be cleaved upon ROS-induced stress and these fragments …


The Scripps Research Institute Summer Undergraduate Research Fellowship, Ezana Assefa Oct 2016

The Scripps Research Institute Summer Undergraduate Research Fellowship, Ezana Assefa

Trick to the Treat of Internships and Research

This program is a 10-week internship designed for undergraduates interested in the scientific field to engage in current research. Students have the option of requesting to work under three mentors, one of which they will be paired. Students will work in the lab with the principal investigator and other members of the lab. Along with working in the lab, students in the program will also attend bi-weekly talks/lectures from researchers, grad students, and professionals at TSRI as well as participating in two presentations and a final poster or oral presentation.


Blood-Tissue Barriers And Autoantibodies In Neurodegenerative Disease Pathogenesis: An Approach To Diagnostics And Disease Mechanism, Eric Luria Goldwaser Aug 2016

Blood-Tissue Barriers And Autoantibodies In Neurodegenerative Disease Pathogenesis: An Approach To Diagnostics And Disease Mechanism, Eric Luria Goldwaser

Graduate School of Biomedical Sciences Theses and Dissertations

Brain homeostasis can be affected in a number of ways that lead to gross anatomical, cellular, and molecular disturbances giving rise to diseases like Alzheimer’s disease (AD) and related dementias. Unfortunately, the mechanistic pathoetiology of AD’s hallmark features of cerebral amyloid plaque buildup and neuronal death are still disputed. Using human brain AD sections, immunohistochemistry experiments revealed internalized surface proteins, co-localized to an expanded lysosomal compartment. Other stains for amyloid-β1-42 (Aβ42) and various immunoglobulin (Ig) species displayed them leaking out of the cerebrovasculature through a dysfunctional blood-brain barrier (BBB), binding to neurons in the vicinity, and localizing to intracellular vesicles …


Activation Of Target Gene Expression In Neurons By The C. Elegans Rfx Transcription Factor, Daf-19, Katherine P. Mueller Jun 2016

Activation Of Target Gene Expression In Neurons By The C. Elegans Rfx Transcription Factor, Daf-19, Katherine P. Mueller

Lawrence University Honors Projects

DAF-19, the only RFX transcription factor found in C. elegans, is required for the formation of neuronal sensory cilia. Four isoforms of the DAF-19 protein have been reported, and the m86 nonsense (null) mutation affecting all four isoforms has been shown to prevent cilia formation. Transcriptome analyses employing microarrays of L1 and adult stage worms were completed using RNA from daf-19(m86) worms and an isogenic wild type strain to identify additional putative DAF-19 target genes. Using transcriptional fusions with GFP, we compared the expression patterns of several potential gene targets using fluorescence confocal microscopy. Expression patterns were characterized in …


An Initial Analysis Of A Long-Term Ketogenic Diet’S Impact On Motor Behavior, Brain Purine Systems, And Nigral Dopamine Neurons In A New Genetic Rodent Model Of Parkinson’S Disease, Jacob Rubin, William H. Church May 2016

An Initial Analysis Of A Long-Term Ketogenic Diet’S Impact On Motor Behavior, Brain Purine Systems, And Nigral Dopamine Neurons In A New Genetic Rodent Model Of Parkinson’S Disease, Jacob Rubin, William H. Church

Senior Theses and Projects

A growing body of research suggests that dopaminergic cell death seen in Parkinson’s disease is caused by mitochondrial dysfunction. Oxidative stress, with subsequent generation of reactive oxygen species, is the hallmark biochemical product of mitochondrial dysfunction. The ketogenic diet has been found to enhance mitochondrial energy production, protect against reactive oxygen species-generated cell death, and increase adenosine, a purine that modulates dopamine activity. The current study evaluates the effects of a long-term (5-month) ketogenic diet on behavioral, neurochemical, and neuroanatomical measures in PINK1-KO rats, a new animal model of Parkinson’s disease. Both wild-type and PINK1-KO animals fed a ketogenic diet …


Pathological Effects Of Repeated Concussive Tbi In Mouse Models: Periventricular Damage And Ventriculomegaly, Richard H. Wolferz Jr. May 2015

Pathological Effects Of Repeated Concussive Tbi In Mouse Models: Periventricular Damage And Ventriculomegaly, Richard H. Wolferz Jr.

Honors Scholar Theses

Repeated concussive traumatic brain injury (rcTBI) is the most prominent form of head injury affecting the brain, with an estimated 1.7 million Americans affected each year (Kuhn 2012). Neurologists have been concerned about the danger of repeated head impacts since the 1920’s, but researchers have only begun to understand the long-term effects of rcTBI (McKee 2009). Although symptoms can be as mild as dizziness, current research suggests that multiple concussions can lead to a progressive degenerative brain disease known as chronic traumatic encephalopathy (CTE) (Luo 2008, McKee 2009, Kane 2013). Research on the brain is just beginning to scratch the …


Diabetes Mellitus And Hypercholesterolemia Are Risk Factors For Alzheimer’S Disease And Appear To Affect The Integrity Of The Blood Brain Barrier, Jacqueline Dash Jun 2013

Diabetes Mellitus And Hypercholesterolemia Are Risk Factors For Alzheimer’S Disease And Appear To Affect The Integrity Of The Blood Brain Barrier, Jacqueline Dash

Graduate School of Biomedical Sciences Theses and Dissertations

Studies have shown that the vascular risk factors common to diabetes mellitus and hypercholesterolemia are also risk factors for Alzheimer’s disease (AD). It is currently unknown how these diseases are associated with AD, but they may cause a leak in the blood brain barrier (BBB), which is one of the hallmarks of AD. In this preliminary study, over 150 pig brain slides were tested for the expression levels of tight junction proteins occludin and claudin V in the BBB microvasculature. There were three groups of pig brains used in this study namely, control pigs, pigs with diabetes mellitus and hypercholesterolemia …


Genetic Connections Between Neurological Disorders And Cholesterol Metabolism, Ingemar Bjorkhem, Valerio Leoni, Steve Meaney Jan 2010

Genetic Connections Between Neurological Disorders And Cholesterol Metabolism, Ingemar Bjorkhem, Valerio Leoni, Steve Meaney

Articles

Cholesterol is an essential component of both the peripheral and central nervous systems of mammals. Over the last decade, evidence has accumulated that disturbances in cholesterol metabolism are associated with the development of various neurological conditions. In addition to genetically defined defects in cholesterol synthesis, which will be covered in another review in this Thematic Series, defects in cholesterol metabolism (cerebrotendinous xanthomatosis) and intracellular transport (Niemann Pick Syndrome) lead to neurological disease. A subform of hereditary spastic paresis (type SPG5) and Huntington's disease are neurological diseases with mutations in genes that are of importance for cholesterol metabolism. Neurodegeneration is generally …