Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Investigative Techniques

Investigations In The Cellular And Molecular Biology Of Human Airway Mucociliary Tissue, Vincent Manna Aug 2021

Investigations In The Cellular And Molecular Biology Of Human Airway Mucociliary Tissue, Vincent Manna

Graduate School of Biomedical Sciences Theses and Dissertations

Our laboratory has integrated the use of a human-derived, in vitro model of airway mucociliary tissue. We isolate human nasal epithelial cells (HNECs) from the nasal mucociliary tissue of donors with a small brush and expand the airway progenitor cells in culture. The HNECs are then seeded onto semi-permeable transwell inserts. The inserts are in contact with the media in the lower chamber but don’t contain media in the upper chamber therefore the cells are exposed to the air while drawing nutrients from the media below, this is called the Air-Liquid Interface (ALI). HNECs cultured at the ALI initiate a …


Development Of Cellular Assays To Monitor Enzymatic And Biological Activity Of Cd73: A Key Modulator Of Anti-Tumor Immune Response, Alexandra Fanuka Jan 2017

Development Of Cellular Assays To Monitor Enzymatic And Biological Activity Of Cd73: A Key Modulator Of Anti-Tumor Immune Response, Alexandra Fanuka

Graduate School of Biomedical Sciences Theses and Dissertations

Ecto-5’-nucleotidase, known as CD73, is an extracellular enzyme that converts adenosine monophosphate (AMP) to adenosine and has recently been identified as a potential drug target for cancer immunotherapy. Its immunosuppressive effects, mediated by the activity of adenosine, are associated with higher rates of tumor invasion and metastasis, as well as poorer prognoses overall in many cancer types. CD73 is often co-expressed with ectonucleoside triphosphate diphosphohydrolase-1 (CD39), which catalyzes the conversion of adenosine triphosphate (ATP) to adenosine diphosphate (ADP), and ADP to AMP on the surface of tumor cells. Dual expression further propagates immunosuppressive effects of adenosine in the tumor microenvironment. …


Genome Engineering To Create Dominant Alleles In Caenorhabditis Elegans Using Crispr-Cas9 Technology, Abrar Sulaimani Jan 2015

Genome Engineering To Create Dominant Alleles In Caenorhabditis Elegans Using Crispr-Cas9 Technology, Abrar Sulaimani

Graduate School of Biomedical Sciences Theses and Dissertations

Many investigators have being using CRISPR-Cas9 as a method of genome engineering because it is easy, accurate and fast. This technique has been used to modify the genomes of a wide variety of organisms, including the nematode Caenorhabditis elegans (C. elegans). The short life cycle and ease of introducing exogenous plasmids make C. elegans an ideal system for advancing this technique. My thesis had two aims that focused on developing methods to create dominant alleles in C. elegans. Genetic modifications like precise deletion and insertions into a locus of chromosome are technically challenging. Additionally, although there are several ways of …