Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Thomas Jefferson University

Department of Biochemistry and Molecular Biology Faculty Papers

Discipline
Keyword
Publication Year
File Type

Articles 31 - 60 of 214

Full-Text Articles in Medicine and Health Sciences

G Protein-Coupled Receptor Kinase 6 (Grk6) Regulates Insulin Processing And Secretion Via Effects On Proinsulin Conversion To Insulin, Matthew J Varney, Wouter Steyaert, Paul J Coucke, Joris R Delanghe, David E Uehling, Babu Joseph, Richard Marcellus, Rima Al-Awar, Jeffrey L Benovic Aug 2022

G Protein-Coupled Receptor Kinase 6 (Grk6) Regulates Insulin Processing And Secretion Via Effects On Proinsulin Conversion To Insulin, Matthew J Varney, Wouter Steyaert, Paul J Coucke, Joris R Delanghe, David E Uehling, Babu Joseph, Richard Marcellus, Rima Al-Awar, Jeffrey L Benovic

Department of Biochemistry and Molecular Biology Faculty Papers

Recent studies identified a missense mutation in the gene coding for G protein-coupled receptor kinase 6 (GRK6) that segregates with type 2 diabetes (T2D). To better understand how GRK6 might be involved in T2D, we used pharmacological inhibition and genetic knockdown in the mouse β-cell line, MIN6, to determine whether GRK6 regulates insulin dynamics. We show inhibition of GRK5 and GRK6 increased insulin secretion but reduced insulin processing while GRK6 knockdown revealed these same processing defects with reduced levels of cellular insulin. GRK6 knockdown cells also had attenuated insulin secretion but enhanced proinsulin secretion consistent with decreased processing. In support …


Neuromuscular Junction Pathology Is Correlated With Differential Motor Unit Vulnerability In Spinal And Bulbar Muscular Atrophy, Elana Molotsky, Y Liu, Andrew P Lieberman, Diane E Merry Jul 2022

Neuromuscular Junction Pathology Is Correlated With Differential Motor Unit Vulnerability In Spinal And Bulbar Muscular Atrophy, Elana Molotsky, Y Liu, Andrew P Lieberman, Diane E Merry

Department of Biochemistry and Molecular Biology Faculty Papers

Spinal and bulbar muscular atrophy (SBMA) is an X-linked, neuromuscular neurodegenerative disease for which there is no cure. The disease is characterized by a selective decrease in fast-muscle power (e.g., tongue pressure, grip strength) accompanied by a selective loss of fast-twitch muscle fibers. However, the relationship between neuromuscular junction (NMJ) pathology and fast-twitch motor unit vulnerability has yet to be explored. In this study, we used a cross-model comparison of two mouse models of SBMA to evaluate neuromuscular junction pathology, glycolytic-to-oxidative fiber-type switching, and cytoskeletal alterations in pre- and postsynaptic termini of tibialis anterior (TA), gastrocnemius, and soleus hindlimb muscles. …


Regulating Phase Transition In Neurodegenerative Diseases By Nuclear Import Receptors, Amandeep Girdhar, Lin Guo Jul 2022

Regulating Phase Transition In Neurodegenerative Diseases By Nuclear Import Receptors, Amandeep Girdhar, Lin Guo

Department of Biochemistry and Molecular Biology Faculty Papers

RNA-binding proteins (RBPs) with a low-complexity prion-like domain (PLD) can undergo aberrant phase transitions and have been implicated in neurodegenerative diseases such as ALS and FTD. Several nuclear RBPs mislocalize to cytoplasmic inclusions in disease conditions. Impairment in nucleocytoplasmic transport is another major event observed in ageing and in neurodegenerative disorders. Nuclear import receptors (NIRs) regulate the nucleocytoplasmic transport of different RBPs bearing a nuclear localization signal by restoring their nuclear localization. NIRs can also specifically dissolve or prevent the aggregation and liquid–liquid phase separation of wild-type or disease-linked mutant RBPs, due to their chaperoning activity. This review focuses on …


Recognition Of The Tdp-43 Nuclear Localization Signal By Importin Α1/Β, Steven G Doll, Hamed Meshkin, Alexander J Bryer, Fenglin Li, Ying-Hui Ko, Ravi K Lokareddy, Richard E Gillilan, Kushol Gupta, Juan R Perilla, Gino Cingolani Jun 2022

Recognition Of The Tdp-43 Nuclear Localization Signal By Importin Α1/Β, Steven G Doll, Hamed Meshkin, Alexander J Bryer, Fenglin Li, Ying-Hui Ko, Ravi K Lokareddy, Richard E Gillilan, Kushol Gupta, Juan R Perilla, Gino Cingolani

Department of Biochemistry and Molecular Biology Faculty Papers

Cytoplasmic mislocalization of the TAR-DNA binding protein of 43 kDa (TDP-43) leads to large, insoluble aggregates that are a hallmark of amyotrophic lateral sclerosis and frontotemporal dementia. Here, we study how importin α1/β recognizes TDP-43 bipartite nuclear localization signal (NLS). We find that the NLS makes extensive contacts with importin α1, especially at the minor NLS-binding site. NLS binding results in steric clashes with the C terminus of importin α1 that disrupts the TDP-43 N-terminal domain (NTD) dimerization interface. A putative phosphorylation site in the proximity of TDP-43 R83 at the minor NLS site destabilizes binding to importins by reducing …


Genomic Features Underlie The Co-Option Of Sva Transposons As Cis-Regulatory Elements In Human Pluripotent Stem Cells, Samantha M Barnada, Andrew Isopi, Daniela Tejada-Martinez, Clément Goubert, Sruti Patoori, Luca Pagliaroli, Mason Tracewell, Marco Trizzino Jun 2022

Genomic Features Underlie The Co-Option Of Sva Transposons As Cis-Regulatory Elements In Human Pluripotent Stem Cells, Samantha M Barnada, Andrew Isopi, Daniela Tejada-Martinez, Clément Goubert, Sruti Patoori, Luca Pagliaroli, Mason Tracewell, Marco Trizzino

Department of Biochemistry and Molecular Biology Faculty Papers

Domestication of transposable elements (TEs) into functional cis-regulatory elements is a widespread phenomenon. However, the mechanisms behind why some TEs are co-opted as functional enhancers while others are not are underappreciated. SINE-VNTR-Alus (SVAs) are the youngest group of transposons in the human genome, where ~3,700 copies are annotated, nearly half of which are human-specific. Many studies indicate that SVAs are among the most frequently co-opted TEs in human gene regulation, but the mechanisms underlying such processes have not yet been thoroughly investigated. Here, we leveraged CRISPR-interference (CRISPRi), computational and functional genomics to elucidate the genomic features that underlie SVA domestication …


Heterozygous Frameshift Variants In Hnrnpa2b1 Cause Early-Onset Oculopharyngeal Muscular Dystrophy, Hong Joo Kim, Payam Mohassel, Sandra Donkervoort, Lin Guo, Kevin O'Donovan, Maura Coughlin, Xaviere Lornage, Nicola Foulds, Simon R Hammans, A Reghan Foley, Charlotte M Fare, Alice F Ford, Masashi Ogasawara, Aki Sato, Aritoshi Iida, Pinki Munot, Gautam Ambegaonkar, Rahul Phadke, Dominic G O'Donovan, Rebecca Buchert, Mona Grimmel, Ana Töpf, Irina T Zaharieva, Lauren Brady, Ying Hu, Thomas E Lloyd, Andrea Klein, Maja Steinlin, Alice Kuster, Sandra Mercier, Pascale Marcorelles, Yann Péréon, Emmanuelle Fleurence, Adnan Manzur, Sarah Ennis, Rosanna Upstill-Goddard, Luca Bello, Cinzia Bertolin, Elena Pegoraro, Leonardo Salviati, Courtney E French, Andriy Shatillo, F Lucy Raymond, Tobias B Haack, Susana Quijano-Roy, Johann Böhm, Isabelle Nelson, Tanya Stojkovic, Teresinha Evangelista, Volker Straub, Norma B Romero, Jocelyn Laporte, Francesco Muntoni, Ichizo Nishino, Mark A Tarnopolsky, James Shorter, Carsten G Bönnemann, J Paul Taylor Apr 2022

Heterozygous Frameshift Variants In Hnrnpa2b1 Cause Early-Onset Oculopharyngeal Muscular Dystrophy, Hong Joo Kim, Payam Mohassel, Sandra Donkervoort, Lin Guo, Kevin O'Donovan, Maura Coughlin, Xaviere Lornage, Nicola Foulds, Simon R Hammans, A Reghan Foley, Charlotte M Fare, Alice F Ford, Masashi Ogasawara, Aki Sato, Aritoshi Iida, Pinki Munot, Gautam Ambegaonkar, Rahul Phadke, Dominic G O'Donovan, Rebecca Buchert, Mona Grimmel, Ana Töpf, Irina T Zaharieva, Lauren Brady, Ying Hu, Thomas E Lloyd, Andrea Klein, Maja Steinlin, Alice Kuster, Sandra Mercier, Pascale Marcorelles, Yann Péréon, Emmanuelle Fleurence, Adnan Manzur, Sarah Ennis, Rosanna Upstill-Goddard, Luca Bello, Cinzia Bertolin, Elena Pegoraro, Leonardo Salviati, Courtney E French, Andriy Shatillo, F Lucy Raymond, Tobias B Haack, Susana Quijano-Roy, Johann Böhm, Isabelle Nelson, Tanya Stojkovic, Teresinha Evangelista, Volker Straub, Norma B Romero, Jocelyn Laporte, Francesco Muntoni, Ichizo Nishino, Mark A Tarnopolsky, James Shorter, Carsten G Bönnemann, J Paul Taylor

Department of Biochemistry and Molecular Biology Faculty Papers

Missense variants in RNA-binding proteins (RBPs) underlie a spectrum of disease phenotypes, including amyotrophic lateral sclerosis, frontotemporal dementia, and inclusion body myopathy. Here, we present ten independent families with a severe, progressive muscular dystrophy, reminiscent of oculopharyngeal muscular dystrophy (OPMD) but of much earlier onset, caused by heterozygous frameshift variants in the RBP hnRNPA2/B1. All disease-causing frameshift mutations abolish the native stop codon and extend the reading frame, creating novel transcripts that escape nonsense-mediated decay and are translated to produce hnRNPA2/B1 protein with the same neomorphic C-terminal sequence. In contrast to previously reported disease-causing missense variants in HNRNPA2B1, these frameshift …


A Periplasmic Cinched Protein Is Required For Siderophore Secretion And Virulence Of Mycobacterium Tuberculosis., Lei Zhang, James E Kent, Meredith Whitaker, David C Young, Dominik Herrmann, Alexander E Aleshin, Ying-Hui Ko, Gino Cingolani, Jamil S Saad, D Branch Moody, Francesca M Marassi, Sabine Ehrt, Michael Niederweis Apr 2022

A Periplasmic Cinched Protein Is Required For Siderophore Secretion And Virulence Of Mycobacterium Tuberculosis., Lei Zhang, James E Kent, Meredith Whitaker, David C Young, Dominik Herrmann, Alexander E Aleshin, Ying-Hui Ko, Gino Cingolani, Jamil S Saad, D Branch Moody, Francesca M Marassi, Sabine Ehrt, Michael Niederweis

Department of Biochemistry and Molecular Biology Faculty Papers

Iron is essential for growth of Mycobacterium tuberculosis, the causative agent of tuberculosis. To acquire iron from the host, M. tuberculosis uses the siderophores called mycobactins and carboxymycobactins. Here, we show that the rv0455c gene is essential for M. tuberculosis to grow in low-iron medium and that secretion of both mycobactins and carboxymycobactins is drastically reduced in the rv0455c deletion mutant. Both water-soluble and membrane-anchored Rv0455c are functional in siderophore secretion, supporting an intracellular role. Lack of Rv0455c results in siderophore toxicity, a phenotype observed for other siderophore secretion mutants, and severely impairs replication of M. tuberculosis in mice, demonstrating …


Functions Of Adp-Ribose Transferases In The Maintenance Of Telomere Integrity, Daniela Muoio, Natalie Laspata, Elise Fouquerel Mar 2022

Functions Of Adp-Ribose Transferases In The Maintenance Of Telomere Integrity, Daniela Muoio, Natalie Laspata, Elise Fouquerel

Department of Biochemistry and Molecular Biology Faculty Papers

The ADP-ribose transferase (ART) family comprises 17 enzymes that catalyze mono- or poly-ADP-ribosylation, a post-translational modification of proteins. Present in all subcellular compartments, ARTs are implicated in a growing number of biological processes including DNA repair, replication, transcription regulation, intra- and extra-cellular signaling, viral infection and cell death. Five members of the family, PARP1, PARP2, PARP3, tankyrase 1 and tankyrase 2 are mainly described for their crucial functions in the maintenance of genome stability. It is well established that the most describedrole of PARP1, 2 and 3 is the repair of DNA lesions while tankyrases 1 and 2 are crucial …


Mechanisms Of Mitochondrial Promoter Recognition In Humans And Other Mammalian Species, Angelica Zamudio-Ochoa, Yaroslav I Morozov, Azadeh Sarfallah, Michael Anikin, Dmitry Temiakov Mar 2022

Mechanisms Of Mitochondrial Promoter Recognition In Humans And Other Mammalian Species, Angelica Zamudio-Ochoa, Yaroslav I Morozov, Azadeh Sarfallah, Michael Anikin, Dmitry Temiakov

Department of Biochemistry and Molecular Biology Faculty Papers

Recognition of mammalian mitochondrial promoters requires the concerted action of mitochondrial RNA polymerase (mtRNAP) and transcription initiation factors TFAM and TFB2M. In this work, we found that transcript slippage results in heterogeneity of the human mitochondrial transcripts in vivo and in vitro. This allowed us to correctly interpret the RNAseq data, identify the bona fide transcription start sites (TSS), and assign mitochondrial promoters for > 50% of mammalian species and some other vertebrates. The divergent structure of the mammalian promoters reveals previously unappreciated aspects of mtDNA evolution. The correct assignment of TSS also enabled us to establish the precise register of …


Differential Recognition Of Canonical Nf-Κb Dimers By Importin Α3, Tyler J. Florio, Ravi K Lokareddy, Daniel P Yeggoni, Rajeshwer S Sankhala, Connor A Ott, Richard E Gillilan, Gino Cingolani Mar 2022

Differential Recognition Of Canonical Nf-Κb Dimers By Importin Α3, Tyler J. Florio, Ravi K Lokareddy, Daniel P Yeggoni, Rajeshwer S Sankhala, Connor A Ott, Richard E Gillilan, Gino Cingolani

Department of Biochemistry and Molecular Biology Faculty Papers

Nuclear translocation of the p50/p65 heterodimer is essential for NF-κB signaling. In unstimulated cells, p50/p65 is retained by the inhibitor IκBα in the cytoplasm that masks the p65-nuclear localization sequence (NLS). Upon activation, p50/p65 is translocated into the nucleus by the adapter importin α3 and the receptor importin β. Here, we describe a bipartite NLS in p50/p65, analogous to nucleoplasmin NLS but exposed in trans. Importin α3 accommodates the p50- and p65-NLSs at the major and minor NLS-binding pockets, respectively. The p50-NLS is the predominant binding determinant, while the p65-NLS induces a conformational change in the Armadillo 7 of importin …


Evidence For Paracrine Protective Role Of Exogenous Αa-Crystallin In Retinal Ganglion Cells, Madhu Nath, Zachary B Sluzala, Ashutosh S Phadte, Yang Shan, Angela M Myers, Patrice E Fort Mar 2022

Evidence For Paracrine Protective Role Of Exogenous Αa-Crystallin In Retinal Ganglion Cells, Madhu Nath, Zachary B Sluzala, Ashutosh S Phadte, Yang Shan, Angela M Myers, Patrice E Fort

Department of Biochemistry and Molecular Biology Faculty Papers

Expression and secretion of neurotrophic factors have long been known as a key mechanism of neuroglial interaction in the central nervous system. In addition, several other intrinsic neuroprotective pathways have been described, including those involving small heat shock proteins such as α-crystallins. While initially considered as a purely intracellular mechanism, both αA-crystallins and αB-crystallins have been recently reported to be secreted by glial cells. While an anti-apoptotic effect of such secreted αA-crystallin has been suggested, its regulation and protective potential remain unclear. We recently identified residue threonine 148 (T148) and its phosphorylation as a critical regulator of αA-crystallin intrinsic neuroprotective …


Viral Ejection Proteins: Mosaically Conserved, Conformational Gymnasts, Nicholas A. Swanson, Chun-Feng Hou, Gino Cingolani Feb 2022

Viral Ejection Proteins: Mosaically Conserved, Conformational Gymnasts, Nicholas A. Swanson, Chun-Feng Hou, Gino Cingolani

Department of Biochemistry and Molecular Biology Faculty Papers

Bacterial viruses (or bacteriophages) have developed formidable ways to deliver their genetic information inside bacteria, overcoming the complexity of the bacterial-cell envelope. In short-tailed phages of the Podoviridae superfamily, genome ejection is mediated by a set of mysterious internal virion proteins, also called ejection or pilot proteins, which are required for infectivity. The ejection proteins are challenging to study due to their plastic structures and transient assembly and have remained less characterized than classical components such as the phage coat protein or terminase subunit. However, a spate of recent cryo-EM structures has elucidated key features underscoring these proteins’ assembly and …


Positive Selection And Enhancer Evolution Shaped Lifespan And Body Mass In Great Apes, Daniela Tejada-Martinez, Roberto A Avelar, Inês Lopes, Bruce Zhang, Guy Novoa, João Pedro De Magalhães, Marco Trizzino Feb 2022

Positive Selection And Enhancer Evolution Shaped Lifespan And Body Mass In Great Apes, Daniela Tejada-Martinez, Roberto A Avelar, Inês Lopes, Bruce Zhang, Guy Novoa, João Pedro De Magalhães, Marco Trizzino

Department of Biochemistry and Molecular Biology Faculty Papers

Within primates, the great apes are outliers both in terms of body size and lifespan, since they include the largest and longest-lived species in the order. Yet, the molecular bases underlying such features are poorly understood. Here, we leveraged an integrated approach to investigate multiple sources of molecular variation across primates, focusing on over 10,000 genes, including approximately 1,500 previously associated with lifespan, and additional approximately 9,000 for which an association with longevity has never been suggested. We analyzed dN/dS rates, positive selection, gene expression (RNA-seq), and gene regulation (ChIP-seq). By analyzing the correlation between dN/dS, maximum lifespan, and body …


Liquid-Liquid Phase Separation Of Tdp-43 And Fus In Physiology And Pathology Of Neurodegenerative Diseases, Jenny L Carey, Lin Guo Feb 2022

Liquid-Liquid Phase Separation Of Tdp-43 And Fus In Physiology And Pathology Of Neurodegenerative Diseases, Jenny L Carey, Lin Guo

Department of Biochemistry and Molecular Biology Faculty Papers

Liquid-liquid phase separation of RNA-binding proteins mediates the formation of numerous membraneless organelles with essential cellular function. However, aberrant phase transition of these proteins leads to the formation of insoluble protein aggregates, which are pathological hallmarks of neurodegenerative diseases including ALS and FTD. TDP-43 and FUS are two such RNA-binding proteins that mislocalize and aggregate in patients of ALS and FTD. They have similar domain structures that provide multivalent interactions driving their phase separation in vitro and in the cellular environment. In this article, we review the factors that mediate and regulate phase separation of TDP-43 and FUS. We also …


Interplay Between An Atp-Binding Cassette F Protein And The Ribosome From Mycobacterium Tuberculosis, Zhicheng Cui, Xiaojun Li, Joonyoung Shin, Howard Gamper, Ya-Ming Hou, James C Sacchettini, Junjie Zhang Jan 2022

Interplay Between An Atp-Binding Cassette F Protein And The Ribosome From Mycobacterium Tuberculosis, Zhicheng Cui, Xiaojun Li, Joonyoung Shin, Howard Gamper, Ya-Ming Hou, James C Sacchettini, Junjie Zhang

Department of Biochemistry and Molecular Biology Faculty Papers

EttA, energy-dependent translational throttle A, is a ribosomal factor that gates ribosome entry into the translation elongation cycle. A detailed understanding of its mechanism of action is limited due to the lack of high-resolution structures along its ATPase cycle. Here we present the cryo-electron microscopy (cryo-EM) structures of EttA from Mycobacterium tuberculosis (Mtb), referred to as MtbEttA, in complex with the Mtb 70S ribosome initiation complex (70SIC) at the pre-hydrolysis (ADPNP) and transition (ADP-VO4) states, and the crystal structure of MtbEttA alone in the post-hydrolysis (ADP) state. We observe that MtbEttA binds the E-site of the Mtb 70SIC, remodeling the …


Characterization Of A New Whim Syndrome Mutant Reveals Mechanistic Differences In Regulation Of The Chemokine Receptor Cxcr4, Jiansong Luo, Francesco De Pascali, G Wendell Richmond, Amer M Khojah, Jeffrey L Benovic Dec 2021

Characterization Of A New Whim Syndrome Mutant Reveals Mechanistic Differences In Regulation Of The Chemokine Receptor Cxcr4, Jiansong Luo, Francesco De Pascali, G Wendell Richmond, Amer M Khojah, Jeffrey L Benovic

Department of Biochemistry and Molecular Biology Faculty Papers

WHIM syndrome is a rare immunodeficiency disorder that is characterized by warts, hypogammaglobulinemia, infections, and myelokathexis. While several gain-of-function mutations that lead to C-terminal truncations, frame shifts and point mutations in the chemokine receptor CXCR4 have been identified in WHIM syndrome patients, the functional effect of these mutations are not fully understood. Here, we report on a new WHIM syndrome mutation that results in a frame shift within the codon for Ser339 (S339fs5) and compare the properties of S339fs5 with wild-type CXCR4 and a previously identified WHIM syndrome mutant, R334X. The S339fs5 and R334X mutants exhibited significantly increased signaling compared …


Time-Resolved Cryo-Em Visualizes Ribosomal Translocation With Ef-G And Gtp, Christine E Carbone, Anna B Loveland, Howard Gamper, Ya-Ming Hou, Gabriel Demo, Andrei A Korostelev Dec 2021

Time-Resolved Cryo-Em Visualizes Ribosomal Translocation With Ef-G And Gtp, Christine E Carbone, Anna B Loveland, Howard Gamper, Ya-Ming Hou, Gabriel Demo, Andrei A Korostelev

Department of Biochemistry and Molecular Biology Faculty Papers

During translation, a conserved GTPase elongation factor-EF-G in bacteria or eEF2 in eukaryotes-translocates tRNA and mRNA through the ribosome. EF-G has been proposed to act as a flexible motor that propels tRNA and mRNA movement, as a rigid pawl that biases unidirectional translocation resulting from ribosome rearrangements, or by various combinations of motor- and pawl-like mechanisms. Using time-resolved cryo-EM, we visualized GTP-catalyzed translocation without inhibitors, capturing elusive structures of ribosome•EF-G intermediates at near-atomic resolution. Prior to translocation, EF-G binds near peptidyl-tRNA, while the rotated 30S subunit stabilizes the EF-G GTPase center. Reverse 30S rotation releases Pi and translocates peptidyl-tRNA and …


Targeting Oncogenic Gαq/11 In Uveal Melanoma, Dominic Lapadula, Jeffrey L Benovic Dec 2021

Targeting Oncogenic Gαq/11 In Uveal Melanoma, Dominic Lapadula, Jeffrey L Benovic

Department of Biochemistry and Molecular Biology Faculty Papers

Uveal melanoma is the most common intraocular cancer in adults and arises from the transformation of melanocytes in the uveal tract. While treatment of the primary tumor is often effective, 36–50% of patients develop metastatic disease primarily to the liver. While various strategies have been used to treat the metastatic disease, there remain no effective treatments that improve survival. Significant insight has been gained into the pathways that are altered in uveal melanoma, with mutually exclusive activating mutations in the GNAQ and GNA11 genes being found in over 90% of patients. These genes encode the alpha subunits of the hetetrotrimeric …


Tera-Seq: True End-To-End Sequencing Of Native Rna Molecules For Transcriptome Characterization, Fadia Ibrahim, Jan Oppelt, Manolis Maragkakis, Zissimos Mourelatos Nov 2021

Tera-Seq: True End-To-End Sequencing Of Native Rna Molecules For Transcriptome Characterization, Fadia Ibrahim, Jan Oppelt, Manolis Maragkakis, Zissimos Mourelatos

Department of Biochemistry and Molecular Biology Faculty Papers

Direct sequencing of single, native RNA molecules through nanopores has a strong potential to transform research in all aspects of RNA biology and clinical diagnostics. The existing platform from Oxford Nanopore Technologies is unable to sequence the very 5′ ends of RNAs and is limited to polyadenylated molecules. Here, we develop True End-to-end RNA Sequencing (TERA-Seq), a platform that addresses these limitations, permitting more thorough transcriptome characterization. TERA-Seq describes both poly-and non-polyadenylated RNA molecules and accurately identifies their native 5′ and 3′ ends by ligating uniquely designed adapters that are sequenced along with the transcript. We find that capped, full-length …


Expression And Purification Of Phage T7 Ejection Proteins For Cryo-Em Analysis, Nicholas A. Swanson, Ravi K Lokareddy, Fenglin Li, Chun-Feng Hou, Mikhail Pavlenok, Michael Niederweis, Gino Cingolani Nov 2021

Expression And Purification Of Phage T7 Ejection Proteins For Cryo-Em Analysis, Nicholas A. Swanson, Ravi K Lokareddy, Fenglin Li, Chun-Feng Hou, Mikhail Pavlenok, Michael Niederweis, Gino Cingolani

Department of Biochemistry and Molecular Biology Faculty Papers

Bacteriophages of the Podoviridae family densely package their genomes into precursor capsids alongside internal virion proteins called ejection proteins. In phage T7 these proteins (gp14, gp15, and gp16) are ejected into the host envelope forming a DNA-ejectosome for genome delivery. Here, we describe the purification and characterization of recombinant gp14, gp15, and gp16. This protocol was used for high-resolution cryo-EM structure analysis of the T7 periplasmic tunnel and can be adapted to study ejection proteins from other phages. For complete details on the use and execution of this protocol, please refer to Swanson et al.


Inability To Switch From Arid1a-Baf To Arid1b-Baf Impairs Exit From Pluripotency And Commitment Towards Neural Crest Formation In Arid1b-Related Neurodevelopmental Disorders, Luca Pagliaroli, Patrizia Porazzi, Alyxandra T Curtis, Chiara Scopa, Harald M M Mikkers, Christian Freund, Lucia Daxinger, Sandra Deliard, Sarah A Welsh, Sarah Offley, Connor A Ott, Bruno Calabretta, Samantha A Brugmann, Gijs W E Santen, Marco Trizzino Nov 2021

Inability To Switch From Arid1a-Baf To Arid1b-Baf Impairs Exit From Pluripotency And Commitment Towards Neural Crest Formation In Arid1b-Related Neurodevelopmental Disorders, Luca Pagliaroli, Patrizia Porazzi, Alyxandra T Curtis, Chiara Scopa, Harald M M Mikkers, Christian Freund, Lucia Daxinger, Sandra Deliard, Sarah A Welsh, Sarah Offley, Connor A Ott, Bruno Calabretta, Samantha A Brugmann, Gijs W E Santen, Marco Trizzino

Department of Biochemistry and Molecular Biology Faculty Papers

Subunit switches in the BAF chromatin remodeler are essential during development. ARID1B and its paralog ARID1A encode for mutually exclusive BAF subunits. De novo ARID1B haploinsufficient mutations cause neurodevelopmental disorders, including Coffin-Siris syndrome, which is characterized by neurological and craniofacial features. Here, we leveraged ARID1B+/- Coffin-Siris patient-derived iPSCs and modeled cranial neural crest cell (CNCC) formation. We discovered that ARID1B is active only during the first stage of this process, coinciding with neuroectoderm specification, where it is part of a lineage-specific BAF configuration (ARID1B-BAF). ARID1B-BAF regulates exit from pluripotency and lineage commitment by attenuating thousands of enhancers and genes of …


Zebrafish Paralogs Brd2a And Brd2b Are Needed For Proper Circulatory, Excretory And Central Nervous System Formation And Act As Genetic Antagonists During Development, Gregory L Branigan, Kelly S Olsen, Isabella Burda, Matthew W Haemmerle, Jason Ho, Alexandra Venuto, Nicholas D D'Antonio, Ian E Briggs, Angela J Dibenedetto Oct 2021

Zebrafish Paralogs Brd2a And Brd2b Are Needed For Proper Circulatory, Excretory And Central Nervous System Formation And Act As Genetic Antagonists During Development, Gregory L Branigan, Kelly S Olsen, Isabella Burda, Matthew W Haemmerle, Jason Ho, Alexandra Venuto, Nicholas D D'Antonio, Ian E Briggs, Angela J Dibenedetto

Department of Biochemistry and Molecular Biology Faculty Papers

Brd2 belongs to the BET family of epigenetic transcriptional co-regulators that act as adaptor-scaffolds for the assembly of chromatin-modifying complexes and other factors at target gene promoters. Brd2 is a protooncogene and candidate gene for juvenile myoclonic epilepsy in humans, a homeobox gene regulator in Drosophila, and a maternal-zygotic factor and cell death modulator that is necessary for normal development of the vertebrate central nervous system (CNS). As two copies of Brd2 exist in zebrafish, we use antisense morpholino knockdown to probe the role of paralog Brd2b, as a comparative study to Brd2a, the ortholog of human Brd2. A deficiency …


Gβγ Regulates Mitotic Golgi Fragmentation And G2/M Cell Cycle Progression., Kalpana Rajanala, Lauren M. Klayman, Philip B. Wedegaertner Oct 2021

Gβγ Regulates Mitotic Golgi Fragmentation And G2/M Cell Cycle Progression., Kalpana Rajanala, Lauren M. Klayman, Philip B. Wedegaertner

Department of Biochemistry and Molecular Biology Faculty Papers

Heterotrimeric G proteins (αβγ) function at the cytoplasmic surface of a cell's plasma membrane to transduce extracellular signals into cellular responses. However, numerous studies indicate that G proteins also play noncanonical roles at unique intracellular locations. Previous work has established that G protein βγ subunits (Gβγ) regulate a signaling pathway on the cytoplasmic surface of Golgi membranes that controls the exit of select protein cargo. Now, we demonstrate a novel role for Gβγ in regulating mitotic Golgi fragmentation, a key checkpoint of the cell cycle that occurs in the late G2 phase. We show that small interfering RNA-mediated depletion of …


Multiple Autonomous Cell Death Suppression Strategies Ensure Cytomegalovirus Fitness, Pratyusha Mandal, Lynsey Nagrani, Liliana Hernandez, Anita Louise Mccormick, Christopher Dillon, Heather Koehler, Linda Roback, Emad S Alnemri, Douglas Green, Edward Mocarski Aug 2021

Multiple Autonomous Cell Death Suppression Strategies Ensure Cytomegalovirus Fitness, Pratyusha Mandal, Lynsey Nagrani, Liliana Hernandez, Anita Louise Mccormick, Christopher Dillon, Heather Koehler, Linda Roback, Emad S Alnemri, Douglas Green, Edward Mocarski

Department of Biochemistry and Molecular Biology Faculty Papers

Programmed cell death pathways eliminate infected cells and regulate infection-associated inflammation during pathogen invasion. Cytomegaloviruses encode several distinct suppressors that block intrinsic apoptosis, extrinsic apoptosis, and necroptosis, pathways that impact pathogenesis of this ubiquitous herpesvirus. Here, we expanded the understanding of three cell autonomous suppression mechanisms on which murine cytomegalovirus relies: (i) M38.5-encoded viral mitochon-drial inhibitor of apoptosis (vMIA), a BAX suppressor that functions in concert with M41.1-encoded viral inhibitor of BAK oligomerization (vIBO), (ii) M36-encoded viral inhibitor of caspase-8 activation (vICA), and (iii) M45-encoded viral inhibitor of RIP/RHIM activation (vIRA). Following infection of bone marrow-derived macrophages, the virus initially …


Loss Of N1-Methylation Of G37 In Trna Induces Ribosome Stalling And Reprograms Gene Expression, Isao Masuda, Jae-Yeon Hwang, Thomas Christian, Sunita Maharjan, Fuad Mohammad, Howard Gamper, Allen R. Buskirk, Ya-Ming Hou Aug 2021

Loss Of N1-Methylation Of G37 In Trna Induces Ribosome Stalling And Reprograms Gene Expression, Isao Masuda, Jae-Yeon Hwang, Thomas Christian, Sunita Maharjan, Fuad Mohammad, Howard Gamper, Allen R. Buskirk, Ya-Ming Hou

Department of Biochemistry and Molecular Biology Faculty Papers

N1-methylation of G37 is required for a subset of tRNAs to maintain the translational reading-frame. While loss of m1G37 increases ribosomal +1 frameshifting, whether it incurs additional translational defects is unknown. Here, we address this question by applying ribosome profiling to gain a genome-wide view of the effects of m1G37 deficiency on protein synthesis. Using E coli as a model, we show that m1G37 deficiency induces ribosome stalling at codons that are normally translated by m1G37-containing tRNAs. Stalling occurs during decoding of affected codons at the ribosomal A site, indicating …


Structural Basis For +1 Ribosomal Frameshifting During Ef-G-Catalyzed Translocation., Gabriel Demo, Howard Gamper, Anna B. Loveland, Isao Masuda, Christine E. Carbone, Egor Svidritskiy, Ya-Ming Hou, Andrei A. Korostelev Jul 2021

Structural Basis For +1 Ribosomal Frameshifting During Ef-G-Catalyzed Translocation., Gabriel Demo, Howard Gamper, Anna B. Loveland, Isao Masuda, Christine E. Carbone, Egor Svidritskiy, Ya-Ming Hou, Andrei A. Korostelev

Department of Biochemistry and Molecular Biology Faculty Papers

Frameshifting of mRNA during translation provides a strategy to expand the coding repertoire of cells and viruses. How and where in the elongation cycle +1-frameshifting occurs remains poorly understood. We describe seven ~3.5-Å-resolution cryo-EM structures of 70S ribosome complexes, allowing visualization of elongation and translocation by the GTPase elongation factor G (EF-G). Four structures with a + 1-frameshifting-prone mRNA reveal that frameshifting takes place during translocation of tRNA and mRNA. Prior to EF-G binding, the pre-translocation complex features an in-frame tRNA-mRNA pairing in the A site. In the partially translocated structure with EF-G•GDPCP, the tRNA shifts to the +1-frame near …


Chloride Sensing By Wnk1 Regulates Nlrp3 Inflammasome Activation And Pyroptosis., Lindsey Mayes-Hopfinger, Aura Enache, Jian Xie, Chou-Long Huang, Robert Köchl, Victor L.J. Tybulewicz, Teresa Fernandes-Alnemri, Emad S. Alnemri Jul 2021

Chloride Sensing By Wnk1 Regulates Nlrp3 Inflammasome Activation And Pyroptosis., Lindsey Mayes-Hopfinger, Aura Enache, Jian Xie, Chou-Long Huang, Robert Köchl, Victor L.J. Tybulewicz, Teresa Fernandes-Alnemri, Emad S. Alnemri

Department of Biochemistry and Molecular Biology Faculty Papers

The NLRP3 inflammasome mediates the production of proinflammatory cytokines and initiates inflammatory cell death. Although NLRP3 is essential for innate immunity, aberrant NLRP3 inflammasome activation contributes to a wide variety of inflammatory diseases. Understanding the pathways that control NLRP3 activation will help develop strategies to treat these diseases. Here we identify WNK1 as a negative regulator of the NLRP3 inflammasome. Macrophages deficient in WNK1 protein or kinase activity have increased NLRP3 activation and pyroptosis compared with control macrophages. Mice with conditional knockout of WNK1 in macrophages have increased IL-1β production in response to NLRP3 stimulation compared with control mice. Mechanistically, …


Dna Polymerase Θ: A Cancer Drug Target With Reverse Transcriptase Activity, Xiaojiang Chen, Richard T. Pomerantz Jul 2021

Dna Polymerase Θ: A Cancer Drug Target With Reverse Transcriptase Activity, Xiaojiang Chen, Richard T. Pomerantz

Department of Biochemistry and Molecular Biology Faculty Papers

The emergence of precision medicine from the development of Poly (ADP‐ribose) polymerase (PARP) inhibitors that preferentially kill cells defective in homologous recombination has sparked wide interest in identifying and characterizing additional DNA repair enzymes that are synthetic lethal with HR factors. DNA polymerase theta (Polθ) is a validated anti‐cancer drug target that is synthetic lethal with HR factors and other DNA repair proteins and confers cellular resistance to various genotoxic cancer therapies. Since its initial characterization as a helicase‐polymerase fusion protein in 2003, many exciting and unexpected activities of Polθ in microhomology‐mediated end‐joining (MMEJ) and translesion synthesis (TLS) have been …


Characterization Of Hnrnpa1 Mutations Defines Diversity In Pathogenic Mechanisms And Clinical Presentation., Danique Beijer, Hong Joo Kim, Lin Guo, Kevin O'Donovan, Inès Mademan, Tine Deconinck, Kristof Van Schil, Charlotte M Fare, Lauren E Drake, Alice F Ford, Andrzej Kochański, Dagmara Kabzińska, Nicolas Dubuisson, Peter Van Den Bergh, Nicol C Voermans, Richard Jlf Lemmers, Silvère M Van Der Maarel, Devon Bonner, Jacinda B Sampson, Matthew T Wheeler, Anahit Mehrabyan, Steven Palmer, Peter De Jonghe, James Shorter, J Paul Taylor, Jonathan Baets Jul 2021

Characterization Of Hnrnpa1 Mutations Defines Diversity In Pathogenic Mechanisms And Clinical Presentation., Danique Beijer, Hong Joo Kim, Lin Guo, Kevin O'Donovan, Inès Mademan, Tine Deconinck, Kristof Van Schil, Charlotte M Fare, Lauren E Drake, Alice F Ford, Andrzej Kochański, Dagmara Kabzińska, Nicolas Dubuisson, Peter Van Den Bergh, Nicol C Voermans, Richard Jlf Lemmers, Silvère M Van Der Maarel, Devon Bonner, Jacinda B Sampson, Matthew T Wheeler, Anahit Mehrabyan, Steven Palmer, Peter De Jonghe, James Shorter, J Paul Taylor, Jonathan Baets

Department of Biochemistry and Molecular Biology Faculty Papers

Mutations in HNRNPA1 encoding heterogeneous nuclear ribonucleoprotein (hnRNP) A1 are a rare cause of amyotrophic lateral sclerosis (ALS) and multisystem proteinopathy (MSP). hnRNPA1 is part of the group of RNA-binding proteins (RBPs) that assemble with RNA to form RNPs. hnRNPs are concentrated in the nucleus and function in pre-mRNA splicing, mRNA stability, and the regulation of transcription and translation. During stress, hnRNPs, mRNA, and other RBPs condense in the cytoplasm to form stress granules (SGs). SGs are implicated in the pathogenesis of (neuro-)degenerative diseases, including ALS and inclusion body myopathy (IBM). Mutations in RBPs that affect SG biology, including FUS, …


Analysis Of The Dna-Binding Properties Of Alx1, An Evolutionarily Conserved Regulator Of Skeletogenesis In Echinoderms, Jennifer Guerrero-Santoro, Jian Ming Khor, Ayşe Haruka Açıkbaş, James B. Jaynes, Charles A Ettensohn Jul 2021

Analysis Of The Dna-Binding Properties Of Alx1, An Evolutionarily Conserved Regulator Of Skeletogenesis In Echinoderms, Jennifer Guerrero-Santoro, Jian Ming Khor, Ayşe Haruka Açıkbaş, James B. Jaynes, Charles A Ettensohn

Department of Biochemistry and Molecular Biology Faculty Papers

Alx1, a homeodomain-containing transcription factor, is a highly conserved regulator of skeletogenesis in echinoderms. In sea urchins, Alx1 plays a central role in the differentiation of embryonic primary mesenchyme cells (PMCs) and positively regulates the transcription of most biomineralization genes expressed by these cells. The alx1 gene arose via duplication and acquired a skeletogenic function distinct from its paralog (alx4) through the exonization of a 41-amino acid motif (the D2 domain). Alx1 and Alx4 contain glutamine-50 paired-type homeodomains, which interact preferentially with palindromic binding sites in vitro. Chromatin immunoprecipitation sequencing (ChIP-seq) studies have shown, however, that Alx1 binds both to …