Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

External Link

Aging

Articles 1 - 4 of 4

Full-Text Articles in Physiology

Developmental Expression Of A Candidate Mullerian Inhibiting Substance Type Ii Receptor, Jose Teixeira, Wei He, Paresh Shah, Nobuyuki Morikawa, Mary Lee, Elizabeth Catlin, Peter Hudson, John Wing, David Maclaughlin, Patricia Donahoe Sep 2014

Developmental Expression Of A Candidate Mullerian Inhibiting Substance Type Ii Receptor, Jose Teixeira, Wei He, Paresh Shah, Nobuyuki Morikawa, Mary Lee, Elizabeth Catlin, Peter Hudson, John Wing, David Maclaughlin, Patricia Donahoe

Mary M. Lee

We have isolated a candidate Mullerian inhibiting substance (MIS) type II receptor complementary DNA from an embryonic rat urogenital ridge library and have studied its binding to MIS, its developmental pattern of expression and tissue distribution. By in situ hybridization with a full-length riboprobe, the receptor is expressed in the mesenchymal cells surrounding the Mullerian duct at embryonic days 14, 15, and 16 and in tubular and follicular structures of the rat fetal gonads. Expression of the messenger RNA was also seen in the granules cells and seminiferous tubules of pubertal gonads. Northern analysis revealed that the MIS type II …


Developmentally Regulated Polyadenylation Of Two Discrete Messenger Ribonucleic Acids For Mullerian Inhibiting Substance, Mary Lee, Richard Cate, Patricia Donahoe, Gerald Waneck Sep 2014

Developmentally Regulated Polyadenylation Of Two Discrete Messenger Ribonucleic Acids For Mullerian Inhibiting Substance, Mary Lee, Richard Cate, Patricia Donahoe, Gerald Waneck

Mary M. Lee

Mullerian inhibiting substance (MIS) is a 140-kilodalton homodimeric glycoprotein that causes regression of the Mullerian ducts in male embryos, and may also have a role in both males and females in the regulation of germ cell maturation. We examined the ontogeny of MIS messenger RNA (mRNA) in rat testes from midgestation through adulthood and found two discrete MIS mRNA species that are developmentally regulated. The larger 2.0-kilobase species is abundant at embryonic day 14, then decreases in late gestation, and is barely detectable after birth. The smaller 1.8-kilobase species is first noted at embryonic day 18 and is the major …


Mullerian Inhibiting Substance Ontogeny And Its Modulation By Follicle-Stimulating Hormone In The Rat Testes, Tatsuo Kuroda, Mary Lee, Christopher Haqq, David Powell, Thomas Manganaro, Patricia Donahoe Sep 2014

Mullerian Inhibiting Substance Ontogeny And Its Modulation By Follicle-Stimulating Hormone In The Rat Testes, Tatsuo Kuroda, Mary Lee, Christopher Haqq, David Powell, Thomas Manganaro, Patricia Donahoe

Mary M. Lee

Mullerian Inhibiting Substance (MIS) production in rat testes from the late fetal to the adult period and its modulation by gonadotropins in neonatal testes were studied using immunohistochemistry, northern analysis, and a graded organ culture bioassay for MIS. The intense immunohistochemical staining for MIS seen in fetal and newborn testes began to decrease gradually after the third postnatal day, then decreased dramatically on the fifth postnatal day. MIS immunohistochemical activity was then present at a low level until about the 20th postnatal day, after which it was barely detectable. The testes from rats treated with FSH at birth showed a …


Developmental Changes In Mullerian Inhibiting Substance In The Cynomolgus Monkey, Macaca Fascicularis, Mary Lee, M. Gustafson, Etsuji Ukiyama, Patricia Donahoe, David Maclaughlin, Michael Wexler, Hugh Keeping Sep 2014

Developmental Changes In Mullerian Inhibiting Substance In The Cynomolgus Monkey, Macaca Fascicularis, Mary Lee, M. Gustafson, Etsuji Ukiyama, Patricia Donahoe, David Maclaughlin, Michael Wexler, Hugh Keeping

Mary M. Lee

Mullerian inhibiting substance (MIS) is a glycoprotein hormone produced in Sertoli cells of the fetal and postnatal testis, and granulosa cells of the pubertal ovary. We examined MIS expression in a nonhuman primate, the cynomolgus macaque monkey (Macaca fascicularis), to define an animal model for studying MIS gene regulation. Changes in testicular MIS mRNA with age were assessed by in situ hybridization of prepubertal to adult testes, Northern analysis of pubertal and adult specimens, and determination of serum MIS concentrations from infancy to adulthood. We found that MIS expression was highest in the youngest animals and decreased progressively with increasing …