Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Molecular and Cellular Neuroscience

Understanding Object Motion Encoding In The Mammalian Retina., Victor Julian Depiero Dec 2019

Understanding Object Motion Encoding In The Mammalian Retina., Victor Julian Depiero

Electronic Theses and Dissertations

Phototransduction, transmission of visual information down the optic nerve incurs delays on the order of 50 – 100ms. This implies that the neuronal representation of a moving object should lag behind the object’s actual position. However, studies have demonstrated that the visual system compensates for neuronal delays using a predictive mechanism called phase advancing, which shifts the population response toward the leading edge of a moving object’s retinal image. To understand how this compensation is achieved in the retina, I investigated cellular and synaptic mechanisms that drive phase advancing. I used three approaches, each testing phase advancing at a …


Mechanisms Of Calcium-Dependent Neurotransmission In Photoreceptors, Justin J. Grassmeyer May 2019

Mechanisms Of Calcium-Dependent Neurotransmission In Photoreceptors, Justin J. Grassmeyer

Theses & Dissertations

Rod and cone photoreceptors initiate vision by transforming light into graded membrane voltage changes that in turn dictate the rate of continuous Ca2+-dependent neurotransmission to postsynaptic neurons. Continuous release relies on synaptic ribbons at photoreceptor active zones, which organize exocytotic proteins and deliver vesicles to release sites near voltage-gated Ca2+ channels. Individual cones possess multiple ribbon synapses at which they contact postsynaptic neurons. We examined heterogeneity in signaling at individual ribbon synapses in salamander cones by measuring the voltage dependence of Ca2+ currents (ICa) and Ca2+ influx at individual ribbon release sites. Ca …


Molecular Analysis Of Cone Photoreceptor Genesis From A Specific Retinal Progenitor Population, Diego F. Buenaventura Feb 2019

Molecular Analysis Of Cone Photoreceptor Genesis From A Specific Retinal Progenitor Population, Diego F. Buenaventura

Dissertations, Theses, and Capstone Projects

There are two types of photosensitive cells of the retina that contribute to image formation: Cone photoreceptors that mediate color discrimination and rods that provide photosensitivity in low-light conditions. Given the importance of cones in high acuity and color vision, deficiencies in this cell type that result from ailments such as retinitis pigmentosa and macular degeneration can lead to a debilitating loss of vision. Currently, one of the most pressing goals in the field of retinal development is the elucidation of the gene regulatory networks (GRN) involved in inducing an undifferentiated cell into becoming a functional cone photoreceptor.

Recently, an …