Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Series

Discipline
Institution
Keyword
Publication
File Type

Articles 1 - 18 of 18

Full-Text Articles in Molecular and Cellular Neuroscience

Assessing The Morphology Of Vesicles In Inhibitory Symmetric Synapses In Safety And Fear Conditions In The Rat Lateral Amygdala, Valerie Kress Dec 2019

Assessing The Morphology Of Vesicles In Inhibitory Symmetric Synapses In Safety And Fear Conditions In The Rat Lateral Amygdala, Valerie Kress

Honors Scholar Theses

There is a significant lack of research on vesicle morphology in inhibitory synapses in the rat lateral amygdala. Published research focuses heavily on excitatory synapses in different parts of the rat brain and even this research rarely focuses on the different vesicle types in axons. It is reported that in these axons, synaptic vesicles traditionally contain neurotransmitters while small dense core vesicles contain active zone proteins and large dense core vesicles contain neuropeptides. This study aims to find correlations between vesicle morphology, location, contents, and potential function of each of the different types of vesicle in inhibitory axons.

After reviewing …


Alzheimer's And Amyloid Beta: Amyloidogenicity And Tauopathy Via Dyshomeostatic Interactions Of Amyloid Beta, Jordan Tillinghast Dec 2019

Alzheimer's And Amyloid Beta: Amyloidogenicity And Tauopathy Via Dyshomeostatic Interactions Of Amyloid Beta, Jordan Tillinghast

Senior Honors Theses

This paper reviews functions of Amyloid-β (Aβ) in healthy individuals compared to the consequences of aberrant Aβ in Alzheimer’s disease (AD). As extraneuronal Aβ accumulation and plaque formation are characteristics of AD, it is reasonable to infer a pivotal role for Aβ in AD pathogenesis. Establishing progress of the disease as well as the mechanism of neurodegeneration from AD have proven difficult (Selkoe, 1994). This thesis provides evidence suggesting the pathogenesis of AD is due to dysfunctional neuronal processes involving Aβ’s synaptic malfunction, abnormal interaction with tau, and disruption of neuronal homeostasis. Significant evidence demonstrates that AD symptoms are partially …


Modeled Microgravity Induces Neutrophil Extracellular Trap (Net)Osis Formation And Reduced Phagocytosis Of Polymorphonuclear Neutrophils, Amber M. Paul Nov 2019

Modeled Microgravity Induces Neutrophil Extracellular Trap (Net)Osis Formation And Reduced Phagocytosis Of Polymorphonuclear Neutrophils, Amber M. Paul

Publications

Spaceflight can dysregulate immunity, by way of increasing granulocytes numbers with impaired function. Polymorphonuclear neutrophils (PMN) are granulocytes that are first responders to infection or injury, and consist of the largest pool of immune cells in humans. PMNs function during innate immunity, through phagocytosis and promotion of inflammation, via the release of reactive oxygen species (ROS) mediators and granule-containing enzymes, such as myeloperoxidase (MPO) and NADPH oxidase-2 (NOX-2). In addition, neutrophil extracellular trap (NET) formation is another mechanism of PMN surveillance that works independently of engulfment phagocytosis, and is a last resort function that can induce NETosis or PMN-specific cell …


Development And Sensory Experience Dependent Regulation Of Microglia In Barrel Cortex, Joshua C. Brumberg, John Kalambogias, Chia-Chien Chen, Safraz Khan, Titus Son, Carolyn Headlam, Cindy Lin Sep 2019

Development And Sensory Experience Dependent Regulation Of Microglia In Barrel Cortex, Joshua C. Brumberg, John Kalambogias, Chia-Chien Chen, Safraz Khan, Titus Son, Carolyn Headlam, Cindy Lin

Publications and Research

The barrel cortex is within the primary somatosensory cortex of the rodent, and processes signals from the vibrissae. Much focus has been devoted to the function of neurons, more recently, the role of glial cells in the processing of sensory input has gained increasing interest. Microglia are the principal immune cells of the nervous system that survey and regulate the cellular constituents of the dynamic nervous system. We investigated the normal and disrupted development of microglia in barrel cortex by chronically depriving sensory signals via whisker trimming for the animals’ first postnatal month. Using immunohistochemistry to label microglia, we performed …


Mice Exposed To Combined Chronic Low-Dose Irradiation And Modeled Microgravity Develop Long-Term Neurological Sequelae, Amber M. Paul, Eliah G. Overbey, William A. Da Silveira, Candice G.T. Tahimic, Sigrid S. Reinsch, Nathaniel Szewczyk, Seta Stanbouly, Charles Wang, Jonathan M. Galazka, Xiao Wen Mao Aug 2019

Mice Exposed To Combined Chronic Low-Dose Irradiation And Modeled Microgravity Develop Long-Term Neurological Sequelae, Amber M. Paul, Eliah G. Overbey, William A. Da Silveira, Candice G.T. Tahimic, Sigrid S. Reinsch, Nathaniel Szewczyk, Seta Stanbouly, Charles Wang, Jonathan M. Galazka, Xiao Wen Mao

Publications

Spaceflight poses many challenges for humans. Ground-based analogs typically focus on single parameters of spaceflight and their associated acute effects. This study assesses the long-term transcriptional effects following single and combination spaceflight analog conditions using the mouse model: simulated microgravity via hindlimb unloading (HLU) and/or low-dose γ-ray irradiation (LDR) for 21 days, followed by 4 months of readaptation. Changes in gene expression and epigenetic modifications in brain samples during readaptation were analyzed by whole transcriptome shotgun sequencing (RNA-seq) and reduced representation bisulfite sequencing (RRBS). The results showed minimal gene expression and cytosine methylation alterations at 4 months readaptation within single …


Molecular Specialization Of Gabaergic Synapses On The Soma And Axon In Cortical And Hippocampal Circuit Function And Dysfunction, April Contreras, Dustin J. Hines, Rochelle M. Hines Jun 2019

Molecular Specialization Of Gabaergic Synapses On The Soma And Axon In Cortical And Hippocampal Circuit Function And Dysfunction, April Contreras, Dustin J. Hines, Rochelle M. Hines

Psychology Faculty Research

The diversity of inhibitory interneurons allows for the coordination and modulation of excitatory principal cell firing. Interneurons that release GABA (γ-aminobutyric acid) onto the soma and axon exert powerful control by virtue of proximity to the site of action potential generation at the axon initial segment (AIS). Here, we review and examine the cellular and molecular regulation of soma and axon targeting GABAergic synapses in the cortex and hippocampus. We also describe their role in controlling network activity in normal and pathological states. Recent studies have demonstrated a specific role for postsynaptic dystroglycan in the formation and maintenance of cholecystokinin …


Evolutionary Expansions And Neofunctionalization Of Ionotropic Glutamate Receptors In Cnidaria, Ellen G. Dow Jun 2019

Evolutionary Expansions And Neofunctionalization Of Ionotropic Glutamate Receptors In Cnidaria, Ellen G. Dow

FIU Electronic Theses and Dissertations

Reef ecosystems are composed of a variety of organisms, transient species of fish and invertebrates, microscopic bacteria and viruses, and structural organisms that build the living foundation, coral. Sessile cnidarians, corals and anemones, interpret dynamic environments of organisms and abiotic factors through a molecular interface. Recognition of foreign molecules occurs through innate immunity via receptors identifying conserved molecular patterns. Similarly, chemosensory receptors monitor the environment through specific ligands. Chemosensory receptors include ionotropic glutamate receptors (iGluRs), transmembrane ion channels involved in chemical sensing and neural signal transduction. Recently, an iGluR homolog was implicated in cnidarian immunological resistance to recurrent infections of …


Novel Characterization Of The Role Of Orthologous Xap5 In Caenorhabditis Elegans, Nabor Vazquez May 2019

Novel Characterization Of The Role Of Orthologous Xap5 In Caenorhabditis Elegans, Nabor Vazquez

Lawrence University Honors Projects

Cilia are one of the oldest and most well conserved cellular organelles. Cilia provide an essential role in cellular locomotion, fluid regulation, and are a site for signal transduction pathways involved in sensation. A new study suggests that XAP5 is a transcription factor in a unicellular organism, Chlamydomonas reinhardtii, which regulates gene expression needed for proper cilium assembly. Our study investigates the conservation of the role of XAP5 in a multicellular system, Caenorhabditis elegans. Alignments between protein, coding region, and promoter sequences for XAP5 orthologs from related species show a good conservation in DNA and protein sequences. As part of …


Molecular Mechanism(S) Of Zika Virus Infection And Associated Neuropathogenesis, Chet Raj Ojha May 2019

Molecular Mechanism(S) Of Zika Virus Infection And Associated Neuropathogenesis, Chet Raj Ojha

FIU Electronic Theses and Dissertations

Zika virus (ZIKV), a mosquito-borne flavivirus, is known to induce various neurodevelopmental disorders including microcephaly and growth retardation in newborns from infected mothers. However, the exact mechanism of ZIKV-associated neurodevelopmental disorders is still unknown. The study was aimed at identifying the molecular mechanism(s) of ZIKV infection using in-vitro and in vivo methods. Using three isolated strains of ZIKV (MR766, R103451, and PRVABC59), we show that the Asian strains of ZIKV are more infective and toxic to glial cells and neurons compared to the African strain. Infection by PRVABC59 induces markedly higher release of inflammatory molecules; IP10, RANTES, IL-6, and IFN-β. …


Reduced Gravity Contributes To Neutrophil To Lymphocyte Ratio Shifting And Promotion Of The Oxidative Stress Response, Amber M. Paul, Siddhita D. Mhatre, Egle Cekanaviciute, Ann-Sofie Schreurs, Candice G.T. Tahimic, Ruth K. Globus, Brian Crucian, Sharmila Bhattacharya May 2019

Reduced Gravity Contributes To Neutrophil To Lymphocyte Ratio Shifting And Promotion Of The Oxidative Stress Response, Amber M. Paul, Siddhita D. Mhatre, Egle Cekanaviciute, Ann-Sofie Schreurs, Candice G.T. Tahimic, Ruth K. Globus, Brian Crucian, Sharmila Bhattacharya

Publications

Spaceflight can cause immune system dysfunction, such as elevated white blood cells (WBC) and polymorphonuclear neutrophils (PMN), along with unchanged or reduced lymphocyte counts. A high PMN to lymphocyte ratio (NLR) can acts as a poor prognosis in cancer and a biomarker for subclinical inflammation however, the NLR has not been identified as a predictor of astronaut health during spaceflight. CBC data collected on board the International Space Station (ISS) was repurposed to determine the granulocyte to lymphocyte ratio (GLR) in humans and the NLR in rodents. The results displayed a progressive increase in GLR and NLR during spaceflight and …


Notch Inhibitors And The Bet Inhibitor Jq-1 Decrease The Growth Of Primary Tumor Cells Derived From A Novel Mouse Model Of C11orf95-Rela Induced Brain Tumor, Ericka Randazzo, Jesse Dunnack, Justin Fang, Joseph Loturco Phd May 2019

Notch Inhibitors And The Bet Inhibitor Jq-1 Decrease The Growth Of Primary Tumor Cells Derived From A Novel Mouse Model Of C11orf95-Rela Induced Brain Tumor, Ericka Randazzo, Jesse Dunnack, Justin Fang, Joseph Loturco Phd

University Scholar Projects

Brain tumors are the most common childhood solid malignancy, and because of remarkable advances in treating many cancers outside of the brain, they have become the leading cause of cancer mortality in children. Ependymomas are a class of brain tumors which can be further subdivided into three groups based upon their location and genetic features. Of the three classes, supratentorial ependymomas are the only subgroup known to be marked by an oncogenic driver gene, which consists of a fusion mutation between the C11orf95 and RELA genes. C11orf95-RELA positive tumors are the most aggressive and lethal of …


Modeling Changes In Cellular Micro-Environment In Mild To Moderate Head Trauma, Xiangfu Zhang, Subhendra N. Sarkar Phd, Rt May 2019

Modeling Changes In Cellular Micro-Environment In Mild To Moderate Head Trauma, Xiangfu Zhang, Subhendra N. Sarkar Phd, Rt

Publications and Research

Our work aims to connect and model multiple small, inter-related tissue injuries as a consequence of mild traumatic brain injuries (mTBI). It has been shown that frontal and temporal lobes are vulnerable regions for brain traumatic injury. A brain injury from a blow or high-speed impact can cause undersurface of the frontal and temporal lobes to deform against the anterior and cranial fossae. This deformation can often trigger damage to the cerebral vasculature, which is ill-understood and can result in chronic damage to larger vessels over time. These physiological injuries can be manifested psychologically; such as patients’ sleep-wake disturbances. The …


Quantifying Expression Of Interneuron Subtype Markers For Dlx-2 Transfected Ng2 Cells, Timothy Nolan May 2019

Quantifying Expression Of Interneuron Subtype Markers For Dlx-2 Transfected Ng2 Cells, Timothy Nolan

Honors Scholar Theses

Neurons are a post-mitotic cell population, and therefore, they are not able to regenerate in vivo after a traumatic injury. Because inhibitory GABAergic interneurons and oligodendrocyte precursor cells (OPCs) are derived from the same precursor, recent studies have focused on transforming these OPCs into GABAergic neurons. However, there are different types of GABAergic interneurons that have different electrophysiological responses, which can lead to functional differences. The Nishiyama laboratory had already used a key gene in GABAergic interneuron and OPC differentiation, Distal-less homeobox 2 (Dlx-2), to transfect OPCs; early electrophysiology tests showed most of these transfected cells behaved like immature neurons, …


Role Of Withaferin A As A Neuroprotectant Against Beta Amyloid Induced Toxicity And Associated Mechanism, Sneham Tiwari Mar 2019

Role Of Withaferin A As A Neuroprotectant Against Beta Amyloid Induced Toxicity And Associated Mechanism, Sneham Tiwari

FIU Electronic Theses and Dissertations

Neurological disorders are the biggest concern globally and ageing contributes in worsening the disease scenarios. In AD or AD like diseases, there is abnormal accumulation of extracellular amyloid beta produced due to abnormal processing of the transmembrane amyloid precursor protein, by β and γ-secretases. It spreads in the cortical and limbic regions of the brain leading to neuronal toxicity, impairment in memory and neurological functions. Aβ deposition in the CNS is common in aging HIV patients. Neurotoxic protein Tat, results in increased Aβ in combination with drugs of abuse cocaine. We examined the role of Withaferin A, against Aβ induced …


Absence Of Endothelial Α5Β1 Integrin Triggers Early Onset Of Experimental Autoimmune Encephalomyelitis Due To Reduced Vascular Remodeling And Compromised Vascular Integrity, Ravi Kant, Sebok K. Halder, Gregory J. Bix, Richard Milner Jan 2019

Absence Of Endothelial Α5Β1 Integrin Triggers Early Onset Of Experimental Autoimmune Encephalomyelitis Due To Reduced Vascular Remodeling And Compromised Vascular Integrity, Ravi Kant, Sebok K. Halder, Gregory J. Bix, Richard Milner

Sanders-Brown Center on Aging Faculty Publications

Early in the development of multiple sclerosis (MS) and its mouse model experimental autoimmune encephalomyelitis (EAE), vascular integrity is compromised. This is accompanied by a marked vascular remodeling response, though it is currently unclear whether this is an adaptive vascular repair mechanism or is part of the pathogenic process. In light of the well-described angiogenic role for the α5β1 integrin, the goal of this study was to evaluate how genetic deletion of endothelial α5 integrin (α5-EC-KO mice) impacts vascular remodeling and repair following vascular disruption during EAE pathogenesis, and how this subsequently influences clinical progression and inflammatory demyelination. Immunofluorescence staining …


Uridine Promotes Neurite Outgrowth In Neuro2a Cells, Jacquelyn Spathies Jan 2019

Uridine Promotes Neurite Outgrowth In Neuro2a Cells, Jacquelyn Spathies

Undergraduate Honors Theses

Neurodegenerative diseases such as Alzheimer's and Parkinson's are the main causes of age-related dementia. These diseases can be due to neuronal cell death and/or impairment of neurite outgrowth. Giant oyster mushroom (GOM), Pleurotus giganteus, is used as a nootropic to improve cognitive function. GOM can also be used to prevent the onset of dementia. The underlying mechanism behind the medicinal property of GOM is unclear. Previous studies have shown that GOM has a high concentration of uridine. In this study, I examined the effects of uridine on neurite outgrowth in the Neuro-2a (N2a) neuroblastoma cell line. We also examined …


Data Collection Curated With An Application Ontology Describes The Methods And Results Upon Performing An Ex-Vivo Voltage-Clamp Assay On Outer Hair Cells Of The Mammalian Cochlea, Brenda Farrell, Jason Bengtson Jan 2019

Data Collection Curated With An Application Ontology Describes The Methods And Results Upon Performing An Ex-Vivo Voltage-Clamp Assay On Outer Hair Cells Of The Mammalian Cochlea, Brenda Farrell, Jason Bengtson

Research Data

This data collection describes the electrical properties of outer hair cells isolated from the mammalian cochlea of the domestic guinea pig. This data was obtained by performing whole-cell patch clamp voltage clamp assay on cells and monitoring the electrical admittance during a DC voltage ramp. The membrane capacitance was then calculated at each membrane potential from this admittance, and the voltage-independent and voltage-dependent membrane capacitance was determined upon further analysis. In some case the DC conductance was also measured by interrogation of the cell with voltage-step function which was calculated from the change in the mean steady-state current with respect …


Identifying Dopamine Receptor Genes And Transcription Marbled Crayfish, Wolfgang Stein, Saisupritha Talasu Jan 2019

Identifying Dopamine Receptor Genes And Transcription Marbled Crayfish, Wolfgang Stein, Saisupritha Talasu

Faculty Publications – Biological Sciences

Modulatory transmitters are major contributors to nervous system plasticity and behavioral flexibility, they determine motivational states and are involved in psychiatric and neurological disorders. Neuromodulators act through a variety of distinct receptors and due to the diversity in receptor subtypes and distribution, a single neuromodulator can exert many different actions. A prerequisite to understand the ways modulators work is thus to identify which receptors are expressed in an animal.

I studied which Dopamine receptors are present in the Procambarus virginalis, a highly invasive species of all female genetic clones with high quality genome and transcriptomes. Their broad behavioral repertoire makes …