Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Molecular and Cellular Neuroscience

Structure-Activity Relationship Studies Of Synthetic Cathinones And Related Agents, Rachel A. Davies Jan 2019

Structure-Activity Relationship Studies Of Synthetic Cathinones And Related Agents, Rachel A. Davies

Theses and Dissertations

Synthetic cathinones and related agents represent an international drug abuse problem, and at the same time an important class of clinically useful compounds. Structure-activity relationship studies are needed to elucidate molecular features underlying the pharmacology of these agents. Illicit methcathinone (i.e., MCAT), the prototype of the synthetic cathinone class, exists as a racemic mixture. Though the differences in potency and target selectivity between the positional and optical isomers of synthetic cathinones and related agents have been demonstrated to have important implications for abuse and therapeutic potential, the two MCAT isomers have never been directly compared at their molecular targets: the …


Spag17 Deficiency Impairs Neuronal Cell Differentiation In Developing Brain, Olivia J. Choi Jan 2019

Spag17 Deficiency Impairs Neuronal Cell Differentiation In Developing Brain, Olivia J. Choi

Theses and Dissertations

The development of the nervous system is a multi-level, time-sensitive process that relies heavily on cell differentiation. However, the molecular mechanisms that control brain development remain poorly understood. We generated a knockout (KO) mouse for the cilia associated gene Spag17. These animals develop hydrocephalus and enlarged ventricles consistent with the role of Spag17 in the motility of ependymal cilia. However, other phenotypes that cannot be explained by this role were also present. Recently, a mutation in Spag17 has been associated with brain malformations and severe intellectual disability in humans. Therefore, we hypothesized that Spag17 plays a crucial role in …


The Role Of Syndecan-1 And Extracellular Vesicles In Breast Cancer Brain Metastasis, Megan R. Sayyad Jan 2019

The Role Of Syndecan-1 And Extracellular Vesicles In Breast Cancer Brain Metastasis, Megan R. Sayyad

Theses and Dissertations

Breast cancer metastasizes to the brain in 15-30% of all breast cancer cases, and metastasis is the predominant cause of breast cancer-related deaths. Patients with HER2-enriched and triple-negative breast cancers (TNBCs) are more likely to develop brain metastases. While targeted therapies exist for HER2-enriched breast cancers, there are no effective treatments for TNBCs. Thus, a greater understanding of how these cancers spread to the brain is critical. In order to spread to the brain, disseminated breast cancer cells must overcome 2 major steps—crossing the blood-brain barrier (BBB) and survival and successful colonization of the distinctive and mostly cellular brain environment. …