Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Molecular and Cellular Neuroscience

The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan May 2021

The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan

Honors Scholar Theses

The granule cells are the most abundant neuronal type in the human brain. Rapid proliferation of granule cell progenitors results in dramatic expansion and folding of the cerebellar cortex during postnatal development. Mis-regulation of this proliferation process causes medulloblastoma, the most prevalent childhood brain tumor. In the developing cerebellum, granule cells are derived from Atoh1-expressing cells, which arise from the upper rhombic lip (the interface between the roof plate and neuroepithelium). In addition to granule cells, the Atoh1 lineage also gives rise to different types of neurons including cerebellar nuclei neurons. In the current study, I have investigated the …


Kcnq2 Localization In The Brainstem, Christina Valera May 2020

Kcnq2 Localization In The Brainstem, Christina Valera

Honors Scholar Theses

KCNQ2 channels are potassium channels that serve to control neuronal excitability. Loss of function mutations in these channels are known to cause various forms of epilepsy. Recently, KCNQ2 R201C and R201H gain of function mutations have been shown to exhibit an exaggerated startle response and other unique phenotypes uncharacteristic of epilepsy. These phenotypes resemble hyperekplexia, a condition in which glycine neurotransmission in the spinal cord and brainstem is affected. While KCNQ2 has widespread localization throughout the brain, its presence in the brainstem remains unknown. We used immunostaining to determine the localization of KCNQ2 in the vagus nerve and hypoglossal nerve …


Quantifying Expression Of Interneuron Subtype Markers For Dlx-2 Transfected Ng2 Cells, Timothy Nolan May 2019

Quantifying Expression Of Interneuron Subtype Markers For Dlx-2 Transfected Ng2 Cells, Timothy Nolan

Honors Scholar Theses

Neurons are a post-mitotic cell population, and therefore, they are not able to regenerate in vivo after a traumatic injury. Because inhibitory GABAergic interneurons and oligodendrocyte precursor cells (OPCs) are derived from the same precursor, recent studies have focused on transforming these OPCs into GABAergic neurons. However, there are different types of GABAergic interneurons that have different electrophysiological responses, which can lead to functional differences. The Nishiyama laboratory had already used a key gene in GABAergic interneuron and OPC differentiation, Distal-less homeobox 2 (Dlx-2), to transfect OPCs; early electrophysiology tests showed most of these transfected cells behaved like immature neurons, …


Pathological Effects Of Repeated Concussive Tbi In Mouse Models: Periventricular Damage And Ventriculomegaly, Richard H. Wolferz Jr. May 2015

Pathological Effects Of Repeated Concussive Tbi In Mouse Models: Periventricular Damage And Ventriculomegaly, Richard H. Wolferz Jr.

Honors Scholar Theses

Repeated concussive traumatic brain injury (rcTBI) is the most prominent form of head injury affecting the brain, with an estimated 1.7 million Americans affected each year (Kuhn 2012). Neurologists have been concerned about the danger of repeated head impacts since the 1920’s, but researchers have only begun to understand the long-term effects of rcTBI (McKee 2009). Although symptoms can be as mild as dizziness, current research suggests that multiple concussions can lead to a progressive degenerative brain disease known as chronic traumatic encephalopathy (CTE) (Luo 2008, McKee 2009, Kane 2013). Research on the brain is just beginning to scratch the …