Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Molecular and Cellular Neuroscience

Does Bisphenol-A, An Estrogen-Like Environmental Toxin, Disrupt Expression Of The Neuronal Chloride Exporter Protein During Early Brain Development?, Mayra S. Mendez Jan 2022

Does Bisphenol-A, An Estrogen-Like Environmental Toxin, Disrupt Expression Of The Neuronal Chloride Exporter Protein During Early Brain Development?, Mayra S. Mendez

Cal Poly Humboldt theses and projects

Bisphenol A (BPA), a manufactured compound found in consumer products, is known to adversely affect early brain development by disrupting normal estrogen signaling. Recently, BPA was reported to suppress expression of a gene encoding the neuron-specific chloride ion transporter, KCC2. Human and animal studies show suppressing KCC2 can cause neuronal and behavioral hyperactivity. Therefore, some adverse effects of BPA may be due to KCC2 suppression and consequent neuronal hyperactivity. This study aimed to determine whether BPA exposure during brain development alters KCC2 expression. A secondary purpose was to evaluate whether a new transgenic zebrafish line, KCC2:mCitrine,could be used to track …


Estrogen Disruption Of Hypothalamic Neural Activity, Princess Dickson Jan 2021

Estrogen Disruption Of Hypothalamic Neural Activity, Princess Dickson

Cal Poly Humboldt theses and projects

The brain is highly dependent on the endocrine system for proper neurodevelopment, as it plays a key role in many biological processes. Bisphenol A is a chemical found in plastics that has the potential to mimic the effects of Estrogen in the body, at least weakly. People interact with plastic that contains BPA regularly, and people are at risk for exposure even before being born. The abundance of BPA, along with other exogenous estrogens, makes examining the relationship between early exposure and changes in brain activity imperative. The current study aims to establish a relationship between disrupted estrogen function and …


The Effects Of Increased Camp Levels On Neuronal Differentiation In Murine Embryonic Stem Cells, And The Creation Of A Crispr-Induced C.1252c>T Point Mutation In The Adcy5 Gene, Elizabeth Zepeda Jan 2018

The Effects Of Increased Camp Levels On Neuronal Differentiation In Murine Embryonic Stem Cells, And The Creation Of A Crispr-Induced C.1252c>T Point Mutation In The Adcy5 Gene, Elizabeth Zepeda

Cal Poly Humboldt theses and projects

ADCY5-related dyskinesia is a rare movement disorder with early onset in childhood and adolescence. Previous studies linked this disease to various point mutations in the ADCY5 gene. Recent studies show that two of the point mutations cause an increase in cyclic adenosine monophosphate (cAMP) levels. However, it remains unknown how increased levels of cAMP result in the phenotypes associated with this disease. My study examines the effects of increased cAMP levels on neuronal differentiation of mouse embryonic stem cells (mESCs). My experiments demonstrated successful differentiation of mESCs into the dopaminergic neuronal lineage, indicated by the presence of Tuj 1 (a …