Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Serotonin

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 16 of 16

Full-Text Articles in Molecular and Cellular Neuroscience

Role Of The G Protein Beta Gamma Subunits In Serotonin Transporter Dynamics, Nora Awadallah Sep 2022

Role Of The G Protein Beta Gamma Subunits In Serotonin Transporter Dynamics, Nora Awadallah

Dissertations, Theses, and Capstone Projects

Serotonin is a vital neurotransmitter and hormone with significant roles in almost every organ system. In the central nervous system, serotonin mediates physiological functions that in turn guide behavior and mood. Here, serotonin is released from serotonergic neurons and exerts its effects through serotonin receptors. Regulation of serotonin neurotransmission is important for the maintenance of its physiological functions; thus, extracellular serotonin must be sequestered to limit the intensity and duration of serotonin transmission. Disproportionate transmission is strongly linked with neurological and psychiatric ailments.

Extracellular serotonin levels are primarily mediated by the serotonin transporter (SERT), a critically important plasma membrane protein …


The Neurobiological Underpinnings Of Depression-Related Maternal Behavior Deficits, Sarah B. Winokur Feb 2022

The Neurobiological Underpinnings Of Depression-Related Maternal Behavior Deficits, Sarah B. Winokur

Doctoral Dissertations

Maternal caregiving is a dynamic process that requires extensive cognitive, motivational, and affective processing. World-wide, approximately 17% of mothers are diagnosed with postpartum depression yearly (Wang et al., 2021). Untreated, mothers with postpartum depression experience deficits in cognition, motivation, affect, and parenting (Arteche et al., 2011; Dix and Meunier, 2009; Lovejoy et al., 2000). Although postpartum depression is related to compromised parenting, to date, few studies have examined the neurobiological mechanisms by which maternal behavior is compromised in postpartum depression (Field, 2010; Murray et al., 1996). This dissertation aims to examine how depression neurobiologically disrupts parenting abilities. These studies …


Neuronal Migration In Developmental Hyperserotonmia: Assessment Of Vesicular Glutamate In The Raphe Nuclei, Trey M. Shupp Aug 2021

Neuronal Migration In Developmental Hyperserotonmia: Assessment Of Vesicular Glutamate In The Raphe Nuclei, Trey M. Shupp

MSU Graduate Theses

The neurotransmitter serotonin is involved in the early development of the central nervous system and the organization of neurons throughout the cerebral cortex and cerebellum. It is proposed that serotonin indirectly interacts with cells in the marginal zone of the cerebral cortex known as Cajal-Retizus (CR) cells. These cells secrete the extracellular matrix protein reelin, which is known for its role in neuronal organization and migration during early neural development. It has been observed that low levels of serotonin are associated with similarly low levels of reelin during development and have been reported to result in disorganization of neurons in …


Investigating Mechanisms In Nociceptors Driving Ongoing Activity And Ongoing Pain, Elia Lopez May 2021

Investigating Mechanisms In Nociceptors Driving Ongoing Activity And Ongoing Pain, Elia Lopez

Dissertations & Theses (Open Access)

Ongoing (apparently spontaneous) pain at rest is a major complaint of patients suffering from many forms of acute and chronic pain, including acute and persistent postsurgical pain. Accumulating evidence suggests ongoing activity in nociceptors is a major driver of ongoing pain. Ongoing activity can be generated in sensory neurons in the absence of sensory generator potentials if one or more of three neurophysiological alterations occur – prolonged depolarization of resting membrane potential (RMP), hyperpolarization of action potential (AP) threshold, and/or increased amplitude of depolarizing spontaneous fluctuations of membrane potential (DSFs) to bridge the gap between RMP and AP threshold. Cellular …


The Receptor Basis Of Serotonergic Modulation In An Olfactory Network, Tyler Ryan Sizemore Jan 2021

The Receptor Basis Of Serotonergic Modulation In An Olfactory Network, Tyler Ryan Sizemore

Graduate Theses, Dissertations, and Problem Reports

Neuromodulation is a nearly ubiquitous process that endows the nervous system with the capacity to alter neural function at every level (synaptic, circuit, network, etc.) without necessarily adding new neurons. Through the actions of neuromodulators, the existing neural circuitry can be adaptively tuned to achieve flexible network output and similarly dynamic behavioral output. However, despite their near ubiquity in all sensory modalities, the mechanisms underlying neuromodulation of sensory processing remain poorly understood. In this dissertation, I address three main questions regarding the mechanisms of one modulator (serotonin) within one sensory modality (olfaction). I begin by establishing a "functional atlas" of …


The Wiring Logic Of Identified Serotonergic Neurons Across Olfactory Networks In Drosophila, Kaylynn E. Coates Jan 2020

The Wiring Logic Of Identified Serotonergic Neurons Across Olfactory Networks In Drosophila, Kaylynn E. Coates

Graduate Theses, Dissertations, and Problem Reports

Serotonin is a ubiquitous neuromodulator that confers flexibility in networks to modulate a wide array of behavioral and physiological processes. However, due to the complexity and heterogeneity of serotonergic systems, it has been challenging to determine the patterns of connectivity as well as the physiological contexts that influence individual serotonin neurons. In this dissertation, I use two serotonergic neurons which innervate the Drosophila olfactory system, the CSDns, as a model to explore these broad questions comprehensively using anatomical approaches. I first show that the CSDns have distinct connectivity relationships with populations of antennal lobe principal olfactory neurons and that their …


The 5-Ht1a-R Knockout Mouse As A Model Of Later Life Anxiety Disorders: Implications For Sex Differences, Tatyana Budylin May 2019

The 5-Ht1a-R Knockout Mouse As A Model Of Later Life Anxiety Disorders: Implications For Sex Differences, Tatyana Budylin

Dissertations, Theses, and Capstone Projects

Anxiety affects nearly twice as many women as it affects men across all cultures and economic groups. Importantly, girls have a higher chance of inheriting anxiety disorders than boys, and many anxiety disorders appear at a very young age. However, little is known about sex differences in brain and behavioral development and how they relate to anxiety in adulthood. Serotonin 1A receptor (5-HT1A-R) mediated signaling has been implicated in depression and anxiety, however most studies that focus on the involvement of the 5-HT1A-R have been conducted in adults. Little is known about how the 5-HT1A …


Ck2 Negatively Regulates 5-Ht4 Receptor Signaling In The Prefrontal Cortex And Mediates Depression-Like Behaviors, Julia Castello Saval Feb 2019

Ck2 Negatively Regulates 5-Ht4 Receptor Signaling In The Prefrontal Cortex And Mediates Depression-Like Behaviors, Julia Castello Saval

Dissertations, Theses, and Capstone Projects

The serotonergic system has been the major candidate in the pathophysiology of mood related disorders such as anxiety and major depressive disorder (MDD). Unfortunately, current antidepressant drugs are ineffective in 50% of the population and require chronic administration for a period of 3-6 weeks before the onset of therapeutic response. 5-HT4 receptor (5-HT4R) agonists have emerged as potential candidates for fast antidepressant action, since an antidepressant response can be achieved after 3 days of pharmacological administration in rodents.

This dissertation aims to investigate the role of casein kinase 2 (CK2) as a regulator of 5-HT4R expression …


Post-Synaptic Mechanisms Of Early And Late Prepulse Inhibition In The Goldfish, Daniel Bronson Feb 2019

Post-Synaptic Mechanisms Of Early And Late Prepulse Inhibition In The Goldfish, Daniel Bronson

Dissertations, Theses, and Capstone Projects

Sensorimotor gating, or prepulse inhibition (PPI), attenuates the startle response during sensory processing by limiting sensory input to the startle circuit. In the goldfish startle circuit, a single action potential in the Mauthner-cell (M-cell) triggers the startle response. PPI in the M-cell is mediated by multiple post-synaptic mechanisms, including the activation of a tonic, shunting inhibition as well as a voltage-sensitive conductance, both of which briefly reduce M-cell excitability. However, the specific channels and pathways that modulate PPI are not fully known. This work further characterizes the post-synaptic conductances that mediate PPI by blocking voltage-gated and inward-rectifying potassium channels, antagonizing …


Structure-Activity Relationship Studies Of Synthetic Cathinones And Related Agents, Rachel A. Davies Jan 2019

Structure-Activity Relationship Studies Of Synthetic Cathinones And Related Agents, Rachel A. Davies

Theses and Dissertations

Synthetic cathinones and related agents represent an international drug abuse problem, and at the same time an important class of clinically useful compounds. Structure-activity relationship studies are needed to elucidate molecular features underlying the pharmacology of these agents. Illicit methcathinone (i.e., MCAT), the prototype of the synthetic cathinone class, exists as a racemic mixture. Though the differences in potency and target selectivity between the positional and optical isomers of synthetic cathinones and related agents have been demonstrated to have important implications for abuse and therapeutic potential, the two MCAT isomers have never been directly compared at their molecular targets: the …


Effort-Related Motivational Dysfunctions: Behavioral And Neurochemical Studies Of The Wistar-Kyoto Rat Model Of Depression, Brendan Abbott Jul 2018

Effort-Related Motivational Dysfunctions: Behavioral And Neurochemical Studies Of The Wistar-Kyoto Rat Model Of Depression, Brendan Abbott

Masters Theses

Depression and related disorders are characterized by motivational dysfunctions, including deficits in behavioral activation and exertion of effort. Animal models of relevance to depression represent a critical starting point in elucidating the neurobiological mechanisms underlying motivational dysfunctions. The present study explored the use of the Wistar-Kyoto (WKY) animal model of depression to examine effort-related functions as measured by voluntary wheel running and performance on a mixed fixed ratio 5/progressive ratio (FR5/PR) operant task. Given the known link between activational aspects of motivation and the mesocorticolimbic dopamine (DA) system, the behavioral effects of d-amphetamine (0.5 and 1.0 mg/kg, IP), a psychostimulant …


Mechanisms Underlying Serotonergic Excitation Of Callosal Projection Neurons In The Mouse Medial Prefrontal Cortex, Emily K. Stephens, Arielle L. Baker, Allan T. Gulledge Jan 2018

Mechanisms Underlying Serotonergic Excitation Of Callosal Projection Neurons In The Mouse Medial Prefrontal Cortex, Emily K. Stephens, Arielle L. Baker, Allan T. Gulledge

Dartmouth Scholarship

Serotonin (5-HT) selectively excites subpopulations of pyramidal neurons in the neocortex via activation of 5-HT2A (2A) receptors coupled to Gq subtype G-protein alpha subunits. Gq-mediated excitatory responses have been attributed primarily to suppression of potassium conductances, including those mediated by KV7 potassium channels (i.e., the M-current), or activation of non-specific cation conductances that underlie calcium-dependent afterdepolarizations (ADPs). However, 2A-dependent excitation of cortical neurons has not been extensively studied, and no consensus exists regarding the underlying ionic effector(s) involved. In layer 5 of the mouse medial prefrontal cortex, we tested potential mechanisms of serotonergic excitation …


Major Neurotransmitters In The Brain, Amy S. Yu '17 May 2017

Major Neurotransmitters In The Brain, Amy S. Yu '17

Independent Study

Arguably the most important and powerful organ in the human body, the brain controls virtually everything one does. From chewing gum to running a marathon, the brain dictates one’s physical responses and actions, while also mediating learning, memory, and emotions. These functions are all regulated by neurotransmitter activity in the brain. While the brain works in complex ways, recent discoveries about neurotransmitters allow us to better understand the underlying mechanisms of brain operation. Each neurotransmitter fulfills a distinct role, but they rely on one another to perform certain activities in the brain as well. The purpose of this review is …


Protein Kinase M Zeta-Mediated Ltp Maintenance In The Non-Human Primate Hippocampus: A Role For Stress And Serotonergic Signaling In Affective Processing, Sasha L. Fulton Dec 2016

Protein Kinase M Zeta-Mediated Ltp Maintenance In The Non-Human Primate Hippocampus: A Role For Stress And Serotonergic Signaling In Affective Processing, Sasha L. Fulton

Theses and Dissertations

Early-Life Stress (ELS) is associated with vulnerability to mood disorder, but it’s not well understood how ELS contributes to deficits in cognitive function. Atypical PKMzeta is critical for LTP maintenance and memory. The current study aims to characterize the ELS phenotype with respect to this key marker of hippocampal LTP.


Activity-Dependent Serotonergic Excitation Of Callosal Projection Neurons In The Mouse Prefrontal Cortex, Emily K. Stephens, Daniel Avesar, Allan T. Gulledge Aug 2014

Activity-Dependent Serotonergic Excitation Of Callosal Projection Neurons In The Mouse Prefrontal Cortex, Emily K. Stephens, Daniel Avesar, Allan T. Gulledge

Dartmouth Scholarship

Layer 5 pyramidal neurons (L5PNs) in the mouse prefrontal cortex respond to serotonin (5-HT) according to their long-distance axonal projections; 5-HT1A (1A) receptors mediate inhibitory responses in corticopontine (CPn) L5PNs, while 5-HT2A (2A) receptors can enhance action potential (AP) output in callosal/commissural (COM) L5PNs, either directly (in “COM-excited” neurons), or following brief 1A-mediated inhibition (in “COM-biphasic” neurons). Here we compare the impact of 5-HT on the excitability of CPn and COM L5PNs experiencing variable excitatory drive produced by current injection (DC current or simulated synaptic current) or with exogenous glutamate. 5-HT delivered at resting membrane potentials, or paired …


Selective Serotonergic Excitation Of Callosal Projection Neurons, Daniel Avesar, Allan T. Gulledge Mar 2012

Selective Serotonergic Excitation Of Callosal Projection Neurons, Daniel Avesar, Allan T. Gulledge

Dartmouth Scholarship

Serotonin (5-HT) acting as a neurotransmitter in the cerebral cortex is critical for cognitive function, yet how 5-HT regulates information processing in cortical circuits is not well understood. We tested the serotonergic responsiveness of layer 5 pyramidal neurons (L5PNs) in the mouse medial prefrontal cortex (mPFC), and found three distinct response types: long-lasting 5-HT1A (1A) receptor-dependent inhibitory responses (84% of L5PNs), 5-HT2A (2A) receptor-dependent excitatory responses (9%), and biphasic responses in which 2A-dependent excitation followed brief inhibition (5%). Relative to 5-HT-inhibited neurons, those excited by 5-HT had physiological properties characteristic of callosal/commissural (COM) neurons that project to the …