Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Molecular and Cellular Neuroscience

Role Of Nucleus Accumbens Dopamine Receptor Signaling In The Suppression Of Punished Reward Seeking, Grace M. Joyner, Anna Caroline Toburen Apr 2023

Role Of Nucleus Accumbens Dopamine Receptor Signaling In The Suppression Of Punished Reward Seeking, Grace M. Joyner, Anna Caroline Toburen

Senior Theses

Previous studies have shown that within the nucleus accumbens (NAc), a brain region associated with motivation and reinforcement learning, activity of neurons expressing the dopamine D2 receptor (D2R neurons) act as a “break” on risky behavior associated with negative outcomes. Moreover, when these neurons are stimulated, rats were found to become more risk averse. However, the impact of dopamine signaling through NAc D2R neurons in risk avoidance is still unclear. To further explore the role of NAc dopamine signaling in punished reward-seeking, we tested rats in a novel punished food-seeking paradigm in which subjects are trained to choose between a …


Neuroanatomy Of The Blackspotted Rockskipper, Entomacrodus Striatus, Pooja Dayal Jan 2020

Neuroanatomy Of The Blackspotted Rockskipper, Entomacrodus Striatus, Pooja Dayal

Williams Honors College, Honors Research Projects

Here I characterized the central neuroanatomy of the Blackspotted Rockskipper, Entomacrodus striatus, native to French Polynesia. The neuroanatomy of E. striatus has not been studied prior to this paper. I used several histology and antibody staining techniques to accomplish this, including Crystal Violet, immunohistochemistry, immunofluorescence, and Bielschowsky’s Silver Nitrate staining. This paper describes the most successful techniques used, identifies major structures in the species’ neuroanatomy, and also explains why studying E. striatus is important in the future of vertebrate research.


An Analysis Of Neurogenesis In A Mouse Model Of Chemotherapy Related Cognitive Impairment, Maxwell A. Hennings May 2017

An Analysis Of Neurogenesis In A Mouse Model Of Chemotherapy Related Cognitive Impairment, Maxwell A. Hennings

Electronic Theses and Dissertations

Cancer patients treated with adjuvant chemotherapy often experience cognitive decline following treatment. This phenomenon, often dubbed “chemo brain” or “chemo fog” is usually temporary, but for a subset of survivors, these cognitive impairments can be long-lasting (>10 years) and negatively affect patients’ quality of life, career performance, and social fulfillment. While it is unclear what neurobiological mechanisms underlie chemotherapy related cognitive impairment, the majority of the animal literature has focused on adult neurogenesis. One process important for neurogenesis is the proliferation of new neurons within the dentate gyrus of the hippocampus. It is evident that many chemotherapy agents can …