Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular and Cellular Neuroscience

Hiv-1 Tat Interactions With Opioids Are Modulated By Progesterone And Estradiol, Dejun Jackson May 2020

Hiv-1 Tat Interactions With Opioids Are Modulated By Progesterone And Estradiol, Dejun Jackson

Honors Theses

HIV infection and combined substance abuse are comorbid epidemics. Previous studies show that concurrent opioid drug use may potentiate HIV-1-mediated neurotoxicity partly via interactions with opioids. Preclinical studies suggest that the HIV-1 trans-activator of transcription (Tat), an HIV regulatory protein, can synergize with opioids to exacerbate its already neurotoxic effects. However, its interactions with clinical opioids, such as oxycodone, have yet to be elucidated. Additionally, Tat disrupts a number of systems including the dopaminergic system, which contribute to its capacity to potentiate the rewarding effects of abused drugs. Although the neurotoxic effects of Tat may be inhibited by gonadal steroids …


Combination Of Investigational Cell-Based Therapy And Deep Brain Stimulation To Alter The Progression Of Parkinson’S Disease, Nader El Seblani Jan 2020

Combination Of Investigational Cell-Based Therapy And Deep Brain Stimulation To Alter The Progression Of Parkinson’S Disease, Nader El Seblani

Theses and Dissertations--Pharmacy

Parkinson’s disease (PD) is the second most common neurodegenerative disorder and the motor symptoms are caused by progressive loss of midbrain dopamine neurons. There is no current treatment that can slow or reverse PD. Our current “DBS-Plus” clinical trial (NCT02369003) features the implantation in vivo of autologous Schwann cells (SCs) derived from a patient’s sural nerve into the substantia nigra pars compacta (SNpc) in combination with Deep Brain Stimulation (DBS) therapy for treating patients with advanced PD.

The central hypothesis of our research is that transdifferentiated SCs within conditioned nerve tissue will deliver pro-regenerative factors to enhance the survival of …