Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Other Neuroscience and Neurobiology

Series

Institution
Keyword
Publication Year
Publication

Articles 1 - 22 of 22

Full-Text Articles in Molecular and Cellular Neuroscience

An End-To-End Cnn With Attentional Mechanism Applied To Raw Eeg In A Bci Classification Task, Elnaz Lashgari, Jordan Ott, Akima Connelly, Pierre Baldi, Uri Maoz Aug 2021

An End-To-End Cnn With Attentional Mechanism Applied To Raw Eeg In A Bci Classification Task, Elnaz Lashgari, Jordan Ott, Akima Connelly, Pierre Baldi, Uri Maoz

Psychology Faculty Articles and Research

Objective. Motor-imagery (MI) classification base on electroencephalography (EEG) has been long studied in neuroscience and more recently widely used in healthcare applications such as mobile assistive robots and neurorehabilitation. In particular, EEG-based motor-imagery classification methods that rely on convolutional neural networks (CNNs) have achieved relatively high classification accuracy. However, naively training CNNs to classify raw EEG data from all channels, especially for high-density EEG, is computationally demanding and requires huge training sets. It often also introduces many irrelevant input features, making it difficult for the CNN to extract the informative ones. This problem is compounded by a dearth of training …


Somatic Inhibition By Microscopic Magnetic Stimulation, Hui Ye Jun 2021

Somatic Inhibition By Microscopic Magnetic Stimulation, Hui Ye

Biology: Faculty Publications and Other Works

Electric currents can produce quick, reversible control of neural activity. Externally applied electric currents have been used in inhibiting certain ganglion cells in clinical practices. Via electromagnetic induction, a miniature-sized magnetic coil could provide focal stimulation to the ganglion neurons. Here we report that high-frequency stimulation with the miniature coil could reversibly block ganglion cell activity in marine mollusk Aplysia californica, regardless the firing frequency of the neurons, or concentration of potassium ions around the ganglion neurons. Presence of the ganglion sheath has minimal impact on the inhibitory effects of the coil. The inhibitory effect was local to the …


The Neurological Asymmetry Of Self-Face Recognition, Aleksandra Janowska, Brianna Balugas, Matthew Pardillo, Victoria Mistretta, Katherine Chavarria, Janet Brenya, Taylor Shelansky, Vanessa Martinez, Kitty Pagano, Nathira Ahmad, Samantha Zorns, Abigail Straus, Sarah Sierra, Julian Keenan Jun 2021

The Neurological Asymmetry Of Self-Face Recognition, Aleksandra Janowska, Brianna Balugas, Matthew Pardillo, Victoria Mistretta, Katherine Chavarria, Janet Brenya, Taylor Shelansky, Vanessa Martinez, Kitty Pagano, Nathira Ahmad, Samantha Zorns, Abigail Straus, Sarah Sierra, Julian Keenan

Department of Biology Faculty Scholarship and Creative Works

While the desire to uncover the neural correlates of consciousness has taken numerous directions, self-face recognition has been a constant in attempts to isolate aspects of self-awareness. The neuroimaging revolution of the 1990s brought about systematic attempts to isolate the underlying neural basis of self-face recognition. These studies, including some of the first fMRI (functional magnetic resonance imaging) examinations, revealed a right-hemisphere bias for self-face recognition in a diverse set of regions including the insula, the dorsal frontal lobe, the temporal parietal junction, and the medial temporal cortex. In this systematic review, we provide confirmation of these data (which are …


The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan May 2021

The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan

University Scholar Projects

The granule cells are the most abundant neuronal type in the human brain. Rapid proliferation of granule cell progenitors results in dramatic expansion and folding of the cerebellar cortex during postnatal development. Mis-regulation of this proliferation process causes medulloblastoma, the most prevalent childhood brain tumor. In the developing cerebellum, granule cells are derived from Atoh1-expressing cells, which arise from the upper rhombic lip (the interface between the roof plate and neuroepithelium). In addition to granule cells, the Atoh1 lineage also gives rise to different types of neurons including cerebellar nuclei neurons. In the current study, I have investigated the …


The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan May 2021

The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan

Honors Scholar Theses

The granule cells are the most abundant neuronal type in the human brain. Rapid proliferation of granule cell progenitors results in dramatic expansion and folding of the cerebellar cortex during postnatal development. Mis-regulation of this proliferation process causes medulloblastoma, the most prevalent childhood brain tumor. In the developing cerebellum, granule cells are derived from Atoh1-expressing cells, which arise from the upper rhombic lip (the interface between the roof plate and neuroepithelium). In addition to granule cells, the Atoh1 lineage also gives rise to different types of neurons including cerebellar nuclei neurons. In the current study, I have investigated the …


Preliminary Evidence Of The Role Of Medial Prefrontal Cortex In Self-Enhancement: A Transcranial Magnetic Stimulation Study, Birgitta Taylor-Lillquist, Vivek Kanpa, Maya Crawford, Mehdi El Filali, Julia Oakes, Alex Jonasz, Amanda Disney, Julian Keenan Aug 2020

Preliminary Evidence Of The Role Of Medial Prefrontal Cortex In Self-Enhancement: A Transcranial Magnetic Stimulation Study, Birgitta Taylor-Lillquist, Vivek Kanpa, Maya Crawford, Mehdi El Filali, Julia Oakes, Alex Jonasz, Amanda Disney, Julian Keenan

Department of Biology Faculty Scholarship and Creative Works

Humans employ a number of strategies to improve their position in their given social hierarchy. Overclaiming involves presenting oneself as having more knowledge than one actually possesses, and it is typically invoked to increase one’s social standing. If increased expectations to possess knowledge is a perceived social pressure, such expectations should increase bouts of overclaiming. As the medial prefrontal cortex (MPFC) is sensitive to social pressure and disruption of the MPFC leads to decreases in overclaiming, we predicted that transcranial magnetic stimulation (TMS) applied to the MPFC would reduce overclaiming and the effects would be enhanced in the presence of …


Assessing The Morphology Of Vesicles In Inhibitory Symmetric Synapses In Safety And Fear Conditions In The Rat Lateral Amygdala, Valerie Kress Dec 2019

Assessing The Morphology Of Vesicles In Inhibitory Symmetric Synapses In Safety And Fear Conditions In The Rat Lateral Amygdala, Valerie Kress

Honors Scholar Theses

There is a significant lack of research on vesicle morphology in inhibitory synapses in the rat lateral amygdala. Published research focuses heavily on excitatory synapses in different parts of the rat brain and even this research rarely focuses on the different vesicle types in axons. It is reported that in these axons, synaptic vesicles traditionally contain neurotransmitters while small dense core vesicles contain active zone proteins and large dense core vesicles contain neuropeptides. This study aims to find correlations between vesicle morphology, location, contents, and potential function of each of the different types of vesicle in inhibitory axons.

After reviewing …


Is Concussion-Related Sleep Disturbance Present After Return To Play In College Athletes?, Alexander Gallaer May 2018

Is Concussion-Related Sleep Disturbance Present After Return To Play In College Athletes?, Alexander Gallaer

Honors Scholar Theses

As one of the most commonly experienced symptoms, the ramifications of sleep disruption as a result of concussion are potentially great, yet widely unexplored. Particularly troublesome is murky data regarding the length of sleep disruption following a concussion. By analyzing self-reported sleep data via the Pittsburgh Sleep Quality Index, this study seeks to investigate potential differences in sleep quality between injured college athletes 40 days after they have been cleared to play and matched controls. Data was analyzed using ANOVA analysis as well as Pearson correlation. No significant differences were found in sleep quality between groups, nor was there a …


Spinal Cord Trauma: An Overview Of Normal Structure And Function, Primary And Secondary Mechanisms Of Injury, And Emerging Treatment Modalities, Daniel Morin May 2018

Spinal Cord Trauma: An Overview Of Normal Structure And Function, Primary And Secondary Mechanisms Of Injury, And Emerging Treatment Modalities, Daniel Morin

Senior Honors Theses

The structures of the spinal cord and vertebral column are designed to provide flexibility, while still providing ample protection for the spinal cord deep within. While it does offer remarkable protection against most routine trauma, the spinal cord is still vulnerable to high-force etiologies of trauma and may become damaged as a result. These events are referred to as primary injury. Following the initial injury, the body’s own physiological responses cause a cascade of deleterious effects, known as secondary injury. Secondary injury is a major therapeutic target in mitigating the effects of spinal cord injury (SCI), and much research is …


Mechanisms Underlying Serotonergic Excitation Of Callosal Projection Neurons In The Mouse Medial Prefrontal Cortex, Emily K. Stephens, Arielle L. Baker, Allan T. Gulledge Jan 2018

Mechanisms Underlying Serotonergic Excitation Of Callosal Projection Neurons In The Mouse Medial Prefrontal Cortex, Emily K. Stephens, Arielle L. Baker, Allan T. Gulledge

Dartmouth Scholarship

Serotonin (5-HT) selectively excites subpopulations of pyramidal neurons in the neocortex via activation of 5-HT2A (2A) receptors coupled to Gq subtype G-protein alpha subunits. Gq-mediated excitatory responses have been attributed primarily to suppression of potassium conductances, including those mediated by KV7 potassium channels (i.e., the M-current), or activation of non-specific cation conductances that underlie calcium-dependent afterdepolarizations (ADPs). However, 2A-dependent excitation of cortical neurons has not been extensively studied, and no consensus exists regarding the underlying ionic effector(s) involved. In layer 5 of the mouse medial prefrontal cortex, we tested potential mechanisms of serotonergic excitation …


Glutamylation Regulates Transport, Specializes Function, And Sculpts The Structure Of Cilia, Robert O'Hagan, Malan Silva, Ken Cq Nguyen, Winnie Zhang, Sebastian Bellotti, Yasmin Ramadan, David Hall, Maureen M. Barr Nov 2017

Glutamylation Regulates Transport, Specializes Function, And Sculpts The Structure Of Cilia, Robert O'Hagan, Malan Silva, Ken Cq Nguyen, Winnie Zhang, Sebastian Bellotti, Yasmin Ramadan, David Hall, Maureen M. Barr

Department of Biology Faculty Scholarship and Creative Works

Ciliary microtubules (MTs) are extensively decorated with post-translational modifications (PTMs), such as glutamylation of tubulin tails. PTMs and tubulin isotype diversity act as a “Tubulin Code” that regulates cytoskeletal stability and the activity of MT-associated proteins such as kinesins. We previously showed that, in C. elegans cilia, the deglutamylase CCPP-1 affects ciliary ultrastructure, localization of the TRP channel PKD-2 and the kinesin-3 KLP-6, and velocity of kinesin-2 OSM-3/KIF17, while a cell-specific α-tubulin isotype regulates ciliary ultrastructure, intraflagellar transport, and ciliary functions of extracellular vesicle (EV)-releasing neurons. Here, we examine the role of PTMs and the Tubulin Code in the cililary …


Encoding Of Saltatory Tactile Velocity In The Adult Orofacial Somatosensory System, Rebecca Custead Jul 2016

Encoding Of Saltatory Tactile Velocity In The Adult Orofacial Somatosensory System, Rebecca Custead

College of Education and Human Sciences: Dissertations, Theses, and Student Research

Processing dynamic tactile inputs is a key function of somatosensory systems. Spatial velocity encoding mechanisms by the nervous system are important for skilled movement production and may play a role in recovery of motor function following neurological insult. Little is known about tactile velocity encoding in trigeminal networks associated with mechanosensory inputs to the face, or the consequences of movement.

High resolution functional magnetic resonance imaging (fMRI) was used to investigate the neural substrates of velocity encoding in the human orofacial somatosensory system during unilateral saltatory pneumotactile inputs to perioral hairy skin in 20 healthy adults. A custom multichannel, scalable …


The Role Of Daf-19 In Non-Ciliated Neurons: How Is Neural Development Regulated By Different Daf-19 Isoforms?, Zabdiel Ek Vazquez Jun 2016

The Role Of Daf-19 In Non-Ciliated Neurons: How Is Neural Development Regulated By Different Daf-19 Isoforms?, Zabdiel Ek Vazquez

Lawrence University Honors Projects

A degenerative disease-like phenotype, specifically reduction in synaptic protein levels in adult worms, is correlated with loss-of-function of the only RFX transcription factor gene, daf-19, in C. elegans. This gene encodes four known transcription factor isoforms, two of which are correlated with particular functions. The DAF-19C isoform activates genes responsible for cilia development, while DAF-19M is needed for cilia specification in males. A comparison of the transcriptome of daf-19 null and isogenic wild type adult worms suggests both positive and negative regulation of gene expression is correlated with the presence of DAF-19 proteins. We have assessed DAF-19 regulation …


Neuron Morphology Influences Axon Initial Segment Plasticity, Allan T. Gulledge, Jaime J. Bravo Jan 2016

Neuron Morphology Influences Axon Initial Segment Plasticity, Allan T. Gulledge, Jaime J. Bravo

Dartmouth Scholarship

In most vertebrate neurons, action potentials are initiated in the axon initial segment (AIS), a specialized region of the axon containing a high density of voltage-gated sodium and potassium channels. It has recently been proposed that neurons use plasticity of AIS length and/or location to regulate their intrinsic excitability. Here we quantify the impact of neuron morphology on AIS plasticity using computational models of simplified and realistic somatodendritic morphologies. In small neurons (e.g., dentate granule neurons), excitability was highest when the AIS was of intermediate length and located adjacent to the soma. Conversely, neurons having larger dendritic trees (e.g., pyramidal …


Role Of The Chondroitin Sulfate Proteoglycan, Neurocan, In Inhibition Of Sensory Neurite Regeneration, Madison Klump, Umang Khandpur, Chris Calulot, Adrian Centers, Diane M. Snow Jan 2016

Role Of The Chondroitin Sulfate Proteoglycan, Neurocan, In Inhibition Of Sensory Neurite Regeneration, Madison Klump, Umang Khandpur, Chris Calulot, Adrian Centers, Diane M. Snow

Lewis Honors College Capstone Collection

In the adult mammalian brain and spinal cord, neuronal injury results in failed neurite regeneration, in part due to the up-regulation of chondroitin sulfate proteoglycans (CSPGs). CSPGs are molecules consisting of a protein core with covalently bound glycosaminoglycans (GAGS), specifically, chondroitin sulfate side-chains. The majority of CSPGs produced after injury originate from reactive astrocytes found in the glial scar surrounding the injury site. Although this milieu is very complex and involves more than just CSPGs, axonal regrowth may be improved if the expression of specific, highly inhibitory CSPGs produced after injury were attenuated selectively. Neurocan is one type of CSPG …


Activity-Dependent Serotonergic Excitation Of Callosal Projection Neurons In The Mouse Prefrontal Cortex, Emily K. Stephens, Daniel Avesar, Allan T. Gulledge Aug 2014

Activity-Dependent Serotonergic Excitation Of Callosal Projection Neurons In The Mouse Prefrontal Cortex, Emily K. Stephens, Daniel Avesar, Allan T. Gulledge

Dartmouth Scholarship

Layer 5 pyramidal neurons (L5PNs) in the mouse prefrontal cortex respond to serotonin (5-HT) according to their long-distance axonal projections; 5-HT1A (1A) receptors mediate inhibitory responses in corticopontine (CPn) L5PNs, while 5-HT2A (2A) receptors can enhance action potential (AP) output in callosal/commissural (COM) L5PNs, either directly (in “COM-excited” neurons), or following brief 1A-mediated inhibition (in “COM-biphasic” neurons). Here we compare the impact of 5-HT on the excitability of CPn and COM L5PNs experiencing variable excitatory drive produced by current injection (DC current or simulated synaptic current) or with exogenous glutamate. 5-HT delivered at resting membrane potentials, or paired …


Astroglial Boundary Formation And Epha4 Signaling In Neuroblast Migration, Nicholas B. Gallo May 2014

Astroglial Boundary Formation And Epha4 Signaling In Neuroblast Migration, Nicholas B. Gallo

University Scholar Projects

Adult neurogenesis, the process of generating new neurons from neural precursors, is a highly complex process that is limited to two specific areas of the brain, the dentate gyrus of the hippocampus and the subventricular zone (SVZ). Despite continued research investigating neurogenesis in these two regions, we still lack a fundamental understanding of the molecular mechanisms of neural cell division, migration, differentiation, and integration in the postnatal brain. In particular, the rostral migratory stream (RMS), which is a cellular migratory route for newly generated neuronal precursors that travel from the SVZ to the olfactory bulb, will provide a useful model …


Astroglial Boundary Formation And Epha4 Signaling In Neuroblast Migration, Nicholas B. Gallo May 2014

Astroglial Boundary Formation And Epha4 Signaling In Neuroblast Migration, Nicholas B. Gallo

Honors Scholar Theses

Adult neurogenesis, the process of generating new neurons from neural precursors, is a highly complex process that is limited to two specific areas of the brain, the dentate gyrus of the hippocampus and the subventricular zone (SVZ). Despite continued research investigating neurogenesis in these two regions, we still lack a fundamental understanding of the molecular mechanisms of neural cell division, migration, differentiation, and integration in the postnatal brain. In particular, the rostral migratory stream (RMS), which is a cellular migratory route for newly generated neuronal precursors that travel from the SVZ to the olfactory bulb, will provide a useful model …


Evidence For Pit-Type (Slc20) And Napi-Ii-Type (Slc34) Transporters In The Rat Choroid Plexus, Hien M. Le May 2012

Evidence For Pit-Type (Slc20) And Napi-Ii-Type (Slc34) Transporters In The Rat Choroid Plexus, Hien M. Le

Honors Scholar Theses

: A major function of the brain choroid plexus (CP) is to regulate the exchange of solutes between the blood plasma and the cerebrospinal fluid (CSF) using selective transporters. CSF inorganic phosphate (Pi) concentration is maintained at about one-half that of plasma and is potentially important because of its regulatory, structural, and biochemical functions. Phosphate is critical for ATP and DNA formation, the linked regulation between phosphate and calcium, and as an intracellular buffer. The human body has two major Pi transporter gene families known as SLC34 (NaPi-II) and SLC20 (PiT), which have wide tissue distribution. Although …


Selective Serotonergic Excitation Of Callosal Projection Neurons, Daniel Avesar, Allan T. Gulledge Mar 2012

Selective Serotonergic Excitation Of Callosal Projection Neurons, Daniel Avesar, Allan T. Gulledge

Dartmouth Scholarship

Serotonin (5-HT) acting as a neurotransmitter in the cerebral cortex is critical for cognitive function, yet how 5-HT regulates information processing in cortical circuits is not well understood. We tested the serotonergic responsiveness of layer 5 pyramidal neurons (L5PNs) in the mouse medial prefrontal cortex (mPFC), and found three distinct response types: long-lasting 5-HT1A (1A) receptor-dependent inhibitory responses (84% of L5PNs), 5-HT2A (2A) receptor-dependent excitatory responses (9%), and biphasic responses in which 2A-dependent excitation followed brief inhibition (5%). Relative to 5-HT-inhibited neurons, those excited by 5-HT had physiological properties characteristic of callosal/commissural (COM) neurons that project to the …


Orbitofrontal Cortex Provides Cross-Modal Valuation Of Self-Generated Stimuli, William A. Cunningham, Ingrid J. Haas, Ashley S. Waggoner Jan 2011

Orbitofrontal Cortex Provides Cross-Modal Valuation Of Self-Generated Stimuli, William A. Cunningham, Ingrid J. Haas, Ashley S. Waggoner

Department of Political Science: Faculty Publications

Prior research has shown that the orbitofrontal cortex (OFC) plays an important role in the representation of the evaluation of stimuli, regardless of stimulus modality. Based on these findings, researchers have proposed that the OFC serves a common currency function, allowing for the direct comparison of different types of perceptual stimuli (e.g. food, drink, money). The present study was designed to extend this research and investigate whether these same regions of OFC that have been identified in previous research are involved in evaluating imagined stimuli. Specifically, we asked participants to draw on prior attitudinal knowledge to generate internal representations of …


A New Laser Pointer Driven Optical Microheater For Precise Local Heat Shock, Mike Placinta Jan 2009

A New Laser Pointer Driven Optical Microheater For Precise Local Heat Shock, Mike Placinta

Masters Theses 1911 - February 2014

The zebrafish has emerged as an important genetic model system for the study of vertebrate development. However, while genetics is a powerful tool for the study of early gene functions, the approach is more limited when it comes to understanding later functions of genes that have essential roles in early embryogenesis. There is thus a need to manipulate gene expression at different times, and ideally only in some regions of the developing embryo. Methods for conditional gene regulation have been established in Drosophila, C.elegans and the mouse, utilizing conditional gene activation systems such as the Gal4-UAS system (fly) and the …