Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 23 of 23

Full-Text Articles in Molecular and Cellular Neuroscience

Molecular Mechanisms Of Opioid Use Disorder In Human Brain Models, Emily Mendez May 2024

Molecular Mechanisms Of Opioid Use Disorder In Human Brain Models, Emily Mendez

Dissertations & Theses (Open Access)

Opioid use disorder (OUD) is a national and global public health crisis with no end in sight. While studies from animal models hint at widespread epigenetic and transcriptomic alterations of opioid drugs, the molecular consequences of long-term exposure to opioid drugs in human brain is still unclear, and human-centered translational models are necessary to discern the human cell type-specific effects of OUD.

Using postmortem brain Brodmann area 9 (BA9) from the UTHealth Brain Collection for Research on Psychiatric Disorders, I identified angiogenic gene networks perturbed in the RNA and protein of OUD subjects, as well as downregulation of many neuron-correlated …


Med12 Is A Critical Regulator Of Neural Crest Lineage And Nervous System Myelination, Fatma Betul Aksoy Yasar Dec 2022

Med12 Is A Critical Regulator Of Neural Crest Lineage And Nervous System Myelination, Fatma Betul Aksoy Yasar

Dissertations & Theses (Open Access)

The Mediator complex (MED) is a multi-subunit protein complex integral to the eukaryotic transcription machinery. MED12 is a Cdk8- regulatory kinase module subunit directly implicated in human disease and is genetically altered in neurological disease and cancer. Numerous attempts at generating an in vivo system to study the role of Med12 failed due to embryonic lethality associated with germline or developmental disruption of Med12 gene. To understand the cellular and molecular processes associated with its role in disease, we generated multiple mouse models with targeted depletion of MED12 in distinct cellular lineages. Our genetically engineered models with induced and conditional …


Innate Lymphoid Cell Characterization And Ilc2s In Neuroinflammation In Aging And Sex Differences, Alexis Mobley, Alexis S. Mobley May 2022

Innate Lymphoid Cell Characterization And Ilc2s In Neuroinflammation In Aging And Sex Differences, Alexis Mobley, Alexis S. Mobley

Dissertations & Theses (Open Access)

Aging affects immunologic responses by a global immune system suppression, including dysregulation of cytokine mediators, leading to increased inflammation throughout all systems, termed inflammaging. However, understanding healthy aging mechanisms can bypass this effect. Inflammaging also leads to poor outcomes during brain injury, making immune-targeting therapeutics tantamount to overall brain health and longevity. Moreover, sex affects disease etiology and severity through hormonal and chromosomal sex, as the X chromosome contains most immunology-based genes. Androgens have a generally suppressive effect on the immune system. Additionally, when immune responses are mounted, males are better at CD4+ T cell type (Th1) responses, while females …


Deciphering The Role Of Hsp110 Chaperones In Diseases Of Protein Misfolding, Unekwu M. Yakubu Dec 2021

Deciphering The Role Of Hsp110 Chaperones In Diseases Of Protein Misfolding, Unekwu M. Yakubu

Dissertations & Theses (Open Access)

Molecular chaperones maintain protein homeostasis (proteostasis) by ensuring the proper folding of polypeptides. Loss of proteostasis has been linked to the onset of numerous neurodegenerative disorders including Alzheimer’s, Parkinson’s, and Huntington’s disease. Hsp110 is a member of the Hsp70 class of molecular chaperones and acts as a nucleotide exchange factor (NEF) for Hsp70, the preeminent Hsp70-family protein folding chaperone. Hsp110 promotes rapid cycling of ADP for ATP, allowing Hsp70 to properly fold nascent or unfolded polypeptides in iterative cycles. In addition to its NEF activity, Hsp110 possesses an Hsp70-like substrate binding domain (SBD) whose biological roles are undefined. Previous work …


Qki-Mediated Cholesterol Biosynthesis In Eye Lens And Myelin Of The Central Nervous System, Seula Shin, Seula Shin Dec 2020

Qki-Mediated Cholesterol Biosynthesis In Eye Lens And Myelin Of The Central Nervous System, Seula Shin, Seula Shin

Dissertations & Theses (Open Access)

Cells obtain cholesterol in two ways, de novo biosynthesis and uptake from circulation. While most tissues utilize both sources, eye lens and brain depend extensively on cholesterol biosynthesis due to the limited supply from circulation. Lens cell membrane consists of highest portion of cholesterol. Brain is the most cholesterol-rich organ, which accounts for 23% of total cholesterol. Genetic mutations of cholesterol biosynthesis enzymes in humans and animal models present cataracts and hypomyelinating disorders linked to neurological impairment. Yet, it remains unclear how gene expression of cholesterol biosynthesis is regulated in lens and brain. Therefore, studying cholesterol biosynthesis in both tissues …


Reversal Of Neurodegeneration By Engineered Monocytes In Alzheimer’S Disease, Chao-Hsien Chen Dec 2020

Reversal Of Neurodegeneration By Engineered Monocytes In Alzheimer’S Disease, Chao-Hsien Chen

Dissertations & Theses (Open Access)

The health challenges posed by Alzheimer’s disease (AD) continue to grow as societies age worldwide. Accumulation of Tau-associated pathology correlates with clinical cognitive deterioration in AD. Resident myeloid cells within the central nervous system (CNS) have a limited capacity to uptake and degrade Tau; however, the resulting secretion of proinflammatory cytokines only acts to accelerate neurodegeneration. Therapeutic antibodies can reduce the neurotoxic oligomeric form of Tau (o-Tau), but in doing so they also aggravate inflammation. Attenuating mutation of the antibody Fc region can silence inflammation but also eliminates its capacity to mediate o-Tau clearance by CNS myeloid cells. Thus, there …


Qki-Mediated Cholesterol Biosynthesis In Eye Lens And Myelin Of The Central Nervous System, Seula Shin, Seula Shin Dec 2020

Qki-Mediated Cholesterol Biosynthesis In Eye Lens And Myelin Of The Central Nervous System, Seula Shin, Seula Shin

Dissertations & Theses (Open Access)

Cells obtain cholesterol in two ways, de novo biosynthesis and uptake from circulation. While most tissues utilize both sources, eye lens and brain depend extensively on cholesterol biosynthesis due to the limited supply from circulation. Lens cell membrane consists of highest portion of cholesterol. Brain is the most cholesterol-rich organ, which accounts for 23% of total cholesterol. Genetic mutations of cholesterol biosynthesis enzymes in humans and animal models present cataracts and hypomyelinating disorders linked to neurological impairment. Yet, it remains unclear how gene expression of cholesterol biosynthesis is regulated in lens and brain. Therefore, studying cholesterol biosynthesis in both tissues …


Aging Lowers Pex5 Levels In Cortical Neurons In Male And Female Mouse Brains, Ndidi-Ese Uzor Aug 2020

Aging Lowers Pex5 Levels In Cortical Neurons In Male And Female Mouse Brains, Ndidi-Ese Uzor

Dissertations & Theses (Open Access)

Peroxisomes are small organelles with critical functions: lipid synthesis, breakdown of reactive oxygen species by antioxidant enzymes, and amino acid degradation. In the brain, peroxisomal lipids make up the myelin sheath. Brain peroxisomal dysfunction leads to lipid disruption or neurological consequences if key peroxisomal proteins are absent. Still, it is unclear how peroxisomes are affected in neurodegenerative diseases and in normal brain aging. This work examines peroxisomal markers in three settings: 1) in a neuronal and 2) animal model of Huntington disease (HD), where mutant huntingtin (mHtt), the causative protein in Huntington disease pathogenesis is expressed, and 3) in the …


Cellular And Circuit Properties Of Slow Oscillations In The Thalamic Reticular Nucleus, John O'Malley Aug 2020

Cellular And Circuit Properties Of Slow Oscillations In The Thalamic Reticular Nucleus, John O'Malley

Dissertations & Theses (Open Access)

During sleep, neurons in the thalamic reticular nucleus (TRN) generate distinct types of oscillatory activity. While the reciprocal synaptic circuits between TRN and sensory thalamic nuclei underlie the generation of sleep spindles, the mechanisms regulating slow (<1 >Hz) forms of thalamic oscillations are poorly understood. Under in vitro conditions, in the absence of synaptic inputs, TRN neurons can generate slow oscillations in a cell-intrinsic manner. Activation of postsynaptic Group 1 metabotropic glutamate receptors (mGluR) leads to long-lasting plateau potentials thought to be mediated by both T-type calcium currents and calcium-activated nonselective cation currents (ICAN). However, the identity of …


A Novel Switch-Like Function Of Delta-Catenin In Dendrite Development, Ryan Baumert Dec 2019

A Novel Switch-Like Function Of Delta-Catenin In Dendrite Development, Ryan Baumert

Dissertations & Theses (Open Access)

The formation of neuronal networks in the brain is tightly regulated, and dependent on the morphology of dendrites, the branch-like signal-receiving structures extending from neurons. Disruptions in dendrite development, or dendritogenesis, can lead to the atypical neuronal connectivity associated with multiple neurodevelopmental diseases. My research addresses molecular processes that underlie dendritogenesis via analysis of a pair of novel interactions involving the protein delta-catenin.

In neurons, delta-catenin localizes to dendrites and synapses, where it functions in their development and maintenance. Structurally, delta-catenin possesses a central Armadillo domain and a C-terminal PDZ-binding motif. This motif associates with PDZ domain-containing proteins, and is …


Development Of A High-Throughput System For Screening Of Anti-Prion Molecules, Katherine Do May 2019

Development Of A High-Throughput System For Screening Of Anti-Prion Molecules, Katherine Do

Dissertations & Theses (Open Access)

The misfolded prion protein causes and transmits disease in both humans and animals. As other infectious agents, prions display strain variation, which can generate different pathological outcomes in affected individuals. Unfortunately, there are no known therapies for these diseases, which at present are invariably fatal. In this work, the Protein Misfolding Cyclic Amplification technology (PMCA, an in vitro test that replicates minimum quantities of infectious prions) has been modified to screen for small molecules inhibiting prion protein misfolding in a strain-specific manner. In order to approach a high-throughput PMCA system, technical aspects in PMCA has been optimized for application of …


Hypothalamic Circuits In The Control Of Feeding And Emotional Behaviors, Leandra Mangieri Dec 2018

Hypothalamic Circuits In The Control Of Feeding And Emotional Behaviors, Leandra Mangieri

Dissertations & Theses (Open Access)

Feeding results from the integration of both nutritional and affective states, and is guided by complex neural circuitry in the brain. The hypothalamus is a critical center controlling feeding and motivated behaviors. We found that targeted photostimulation of projections from the lateral hypothalamus (LH) to the paraventricular hypothalamus (PVH) in mice elicited voracious feeding and repetitive self-grooming behavior. GABA neurotransmission in the LH->PVH circuit mediated the evoked feeding behavior, and elicited behavioral approach, whereas glutamate release promoted repetitive self-grooming, which was stress-related in nature. Optogenetic inhibition of LHGABA ->PVH circuit reduced feeding after fasting, whereas photostimulation abruptly …


The Role Of Perivascular Fibrosis In Post-Stroke Glymphatic Impairment And Cerebral Amyloid Angiopathy, Matthew D. Howe Aug 2018

The Role Of Perivascular Fibrosis In Post-Stroke Glymphatic Impairment And Cerebral Amyloid Angiopathy, Matthew D. Howe

Dissertations & Theses (Open Access)

In healthy brain tissue, toxic amyloid-β (Aβ) proteins are transported by the pulsatile flow of cerebrospinal fluid (CSF) along perivascular drainage pathways. Ischemic stroke may disrupt this process, leading to a perivascular build-up of Aβ, termed cerebral amyloid angiopathy (CAA). I hypothesize that an abnormal pattern of extracellular matrix deposition within the vascular basement membrane, termed fibrosis, impairs Aβ drainage from the aged brain after stroke. I further hypothesize that inhibition of astrocytic transforming growth factor-β (TGF-β) signaling can reverse these phenotypes. Finally, I also hypothesize that serum biomarkers of perivascular fibrosis can be used to diagnose CAA following intracerebral …


Circulating Autoantibodies In Human Traumatic Spinal Cord Injury Subjects And Their Relationship To The Development Of Neuropathic Pain, Georgene Hergenroeder Dec 2017

Circulating Autoantibodies In Human Traumatic Spinal Cord Injury Subjects And Their Relationship To The Development Of Neuropathic Pain, Georgene Hergenroeder

Dissertations & Theses (Open Access)

Background:

Approximately 17,500 spinal cord injuries (SCI) occur yearly in the U.S. causing considerable morbidity and mortality. Neuropathic pain (NP) ensues in 40-70% of SCI. An autoimmune response resulting from disruption of the blood-spinal cord-barrier may be a contributor to NP. However, the relationship between autoantibodies and NP after SCI in humans has not been thoroughly characterized nor have autoantigens been identified. Glial fibrillary acidic protein (GFAP) and collapsin response mediator protein2 (CRMP2) were identified as candidate autoantigens. The hypothesis is that proteins from the injured spinal cord released by SCI trigger autoantibody production which can lead to the development …


Endocytic Trafficking Of The Amyloid Precursor Protein In Rat Cortical Neurons, Sahily Reyes Dec 2017

Endocytic Trafficking Of The Amyloid Precursor Protein In Rat Cortical Neurons, Sahily Reyes

Dissertations & Theses (Open Access)

Amyloid-beta (Aβ) aggregation and deposition into extracellular plaques is a hallmark of the most common forms of dementia, including Alzheimer’s disease. The Aβ-containing plaques result from pathogenic cleavage of amyloid precursor protein (APP) by secretases resulting in intracellular production of Aβ peptides that are secreted and accumulate extracellularly. Despite considerable progress towards understanding APP processing and Aβ aggregation, the mechanisms underlying endosomal production of Aβ peptides and their secretion remain unclear. Using endosomes isolated from cultured primary neurons, we determined that the trafficking of APP from the endosomal membrane into internal vesicles of late endosome/multivesicular bodies (MVB) is dependent on …


Characterization And Reversal Of Doxorubicin-Mediated Changes In Sensory Neurons, Brittany L. Coughlin May 2017

Characterization And Reversal Of Doxorubicin-Mediated Changes In Sensory Neurons, Brittany L. Coughlin

Dissertations & Theses (Open Access)

Chemotherapeutic agents impair memory in humans as well as in animal models. Such memory impairments can be persistent, lasting years after exposure to chemotherapy. Doxorubicin (DOX), a common chemotherapeutic agent, has been associated with memory impairments in humans and induces memory deficits in rodent models. DOX also impairs serotonin (5-HT)-induced long-term synaptic facilitation (LTF) in Aplysia sensorimotor co-cultures, a cellular analog of long-term memory formation. In addition, DOX leads to dynamic activation of extracellular signal-regulated kinase (ERK), consisting of an immediate and a delayed phase of activation, and to transient activation of p38 mitogen-activated protein kinase (p38 MAPK) in Aplysia …


Characterization Of Vesicular Monoamine Transporter 2 And Its Role In Parkinson's Disease Pathogenesis Using Drosophila, Antonio Joel Tito Jr., Sheng Zhang Dec 2016

Characterization Of Vesicular Monoamine Transporter 2 And Its Role In Parkinson's Disease Pathogenesis Using Drosophila, Antonio Joel Tito Jr., Sheng Zhang

Dissertations & Theses (Open Access)

Parkinson’s disease (PD) is a progressive neurodegenerative disorder caused by the selective loss of the dopaminergic neurons in the Substantia nigra pars compacta region of the brain. PD is also the most common neurodegenerative disorder and the second most common movement disorder. PD patients exhibit the cardinal symptoms, including tremor of the extremities, rigidity, slowness of movement, and postural instability, after 70-80% of DA neurons degenerate. It is, therefore, imperative to elucidate the underlying mechanisms involved in the selective degeneration of DA neurons. Although increasing numbers of PD genes have been identified, why these largely widely expressed genes induce …


Maguk Scaffolds Organize A Key Synaptic Complex In Horizontal Cell Processes Contacting Photoreceptors, Alejandro Vila, Ph.D. Dec 2016

Maguk Scaffolds Organize A Key Synaptic Complex In Horizontal Cell Processes Contacting Photoreceptors, Alejandro Vila, Ph.D.

Dissertations & Theses (Open Access)

Synaptic processes and plasticity of synapses are mediated by large suites of proteins. In most cases, many of these proteins are tethered together by synaptic scaffold proteins. Scaffold proteins have a large number and typically a variety of protein interaction domains that allow many different proteins to be assembled into functional complexes. As each scaffold protein has a different set of protein interaction domains and a unique set of interacting partners, the presence of synaptic scaffolds can provide insight into the molecular mechanisms that regulate synaptic processes. In studies of rabbit retina, we found SAP102 and Chapsyn110 selectively localized in …


Tnf Signaling During Tissue Damage-Induced Nociceptive Sensitization In Drosophila, Juyeon Jo Aug 2016

Tnf Signaling During Tissue Damage-Induced Nociceptive Sensitization In Drosophila, Juyeon Jo

Dissertations & Theses (Open Access)

Tumor necrosis factor (TNF) signaling is required for inflammatory nociceptive sensitization in both Drosophila and vertebrates. In Drosophila larval model of nociceptive sensitization, UV irradiation in results in epidermal apoptosis and thermal allodynia. TNF/Eiger is produced from dying epidermal cells and acts its receptor in nociceptive sensory neurons to induce thermal allodynia. Inhibition of TNF signaling results in attenuation of nociceptive sensitization whereas epidermal apoptosis still occurs in the absence of TNF. Major gaps in this model are the precise relationship between apoptotic cell death and production of TNF/Eiger, downstream signaling mediators for TNFR/Wengen, and target genes that alter nociceptive …


Role Of Neurogranin In The Regulation Of Calcium Binding To Calmodulin, Anuja Chandrasekar May 2013

Role Of Neurogranin In The Regulation Of Calcium Binding To Calmodulin, Anuja Chandrasekar

Dissertations & Theses (Open Access)

Role of Neurogranin in the regulation of calcium binding to Calmodulin

Anuja Chandrasekar, B.S

Advisor: M. Neal Waxham, Ph.D

The overall goal of my project was to gain a quantitative understanding of how the interaction between two proteins neurogranin (RC3) and calmodulin (CaM) alters a fundamental property of CaM. CaM, has been extensively studied for more than four decades due to its seminal role in almost all biological functions as a calcium signal transducer. Calcium signals in cardiac and neuronal cells are exquisitely precise and enable activation of some processes while down-regulating others. CaM, with its four calcium binding sites, …


Conformational Changes In The Extracellular Domain Of Glutamate Receptors, Anu Rambhadran Dec 2011

Conformational Changes In The Extracellular Domain Of Glutamate Receptors, Anu Rambhadran

Dissertations & Theses (Open Access)

The family of membrane protein called glutamate receptors play an important role in the central nervous system in mediating signaling between neurons. Glutamate receptors are involved in the elaborate game that nerve cells play with each other in order to control movement, memory, and learning.

Neurons achieve this communication by rapidly converting electrical signals into chemical signals and then converting them back into electrical signals. To propagate an electrical impulse, neurons in the brain launch bursts of neurotransmitter molecules like glutamate at the junction between neurons, called the synapse. Glutamate receptors are found lodged in the membranes of the post-synaptic …


The Role Of The Androgen Receptor Cofactor P44/Wdr77 In Astrocyte Activation, Bryce H. Vincent Aug 2011

The Role Of The Androgen Receptor Cofactor P44/Wdr77 In Astrocyte Activation, Bryce H. Vincent

Dissertations & Theses (Open Access)

Astrogliosis is induced by neuronal damage and is also a pathological feature of the major aging-related neurodegenerative disorders. The mechanisms that control the cascade of astrogliosis have not been well established. In a previous study, we identified a novel androgen receptor (AR)-interacting protein (p44/WDR77) and found that it plays a critical role in the control of proliferation and differentiation of prostate epithelial cells. In the present study, we found that deletion of the p44 gene in the mouse brain caused accelerated aging with dramatic astrogliosis. The p44/WDR77 is expressed in astrocytes and loss of p44/WDR77 expression in astrocytes leads to …


Upregulation Of Reactive Oxygen Species During The Retrovirus Life Cycle And Their Roles In A Mutant Of Moloney Murine Leukemia Virus, Ts1-Mediated Neurodegeneration, Soo Jin Kim Aug 2011

Upregulation Of Reactive Oxygen Species During The Retrovirus Life Cycle And Their Roles In A Mutant Of Moloney Murine Leukemia Virus, Ts1-Mediated Neurodegeneration, Soo Jin Kim

Dissertations & Theses (Open Access)

Viral invasion of the central nervous system (CNS) and development of neurological symptoms is a characteristic of many retroviruses. The mechanism by which retrovirus infection causes neurological dysfunction has yet to be fully elucidated. Given the complexity of the retrovirus-mediated neuropathogenesis, studies using small animal models are extremely valuable. Our laboratory has used a mutant moloney murine leukemia retrovirus, ts1-mediated neurodegneration. We hypothesize that astrocytes play an important role in ts1-induced neurodegeneration since they are retroviral reservoirs and supporting cells for neurons. It has been shown that ts1 is able to infect astrocytes in vivo and in …