Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Molecular and Cellular Neuroscience

A Novel Switch-Like Function Of Delta-Catenin In Dendrite Development, Ryan Baumert Dec 2019

A Novel Switch-Like Function Of Delta-Catenin In Dendrite Development, Ryan Baumert

Dissertations & Theses (Open Access)

The formation of neuronal networks in the brain is tightly regulated, and dependent on the morphology of dendrites, the branch-like signal-receiving structures extending from neurons. Disruptions in dendrite development, or dendritogenesis, can lead to the atypical neuronal connectivity associated with multiple neurodevelopmental diseases. My research addresses molecular processes that underlie dendritogenesis via analysis of a pair of novel interactions involving the protein delta-catenin.

In neurons, delta-catenin localizes to dendrites and synapses, where it functions in their development and maintenance. Structurally, delta-catenin possesses a central Armadillo domain and a C-terminal PDZ-binding motif. This motif associates with PDZ domain-containing proteins, and is …


Investigating The Effects Of Excitotoxic Stimuli On The Suprachiasmatic Nucleus, Rachel A. Brandes Dec 2019

Investigating The Effects Of Excitotoxic Stimuli On The Suprachiasmatic Nucleus, Rachel A. Brandes

Chancellor’s Honors Program Projects

No abstract provided.


Investigating The Role Of Integrin Beta 3 In Dendritic Arborization In The Supragranular Developing Cerebral Cortex, Zachary Logan Holley May 2019

Investigating The Role Of Integrin Beta 3 In Dendritic Arborization In The Supragranular Developing Cerebral Cortex, Zachary Logan Holley

Senior Honors Projects, 2010-2019

Integrin subunits have been implicated in axonal and dendritic outgrowth. In particular, a strong positive association has been found between mutations in integrin beta 3 (Itgb3) and autism spectrum disorder, but little is known about neuronal Itgb3 function in vivo. Many forms of autism spectrum disorder are thought to arise from dysfunctional dendritic arborization and synaptic pruning. Global knockout of Itgb3 in mice leads to autistic-like behaviors. Itgb3-/- mice also have reduced callosal volume, a key neuroanatomical correlate of autism. Here, we test the hypothesis that Itgb3 is required for normal dendritic arborization in layer II/III pyramidal …


Development Of A High-Throughput System For Screening Of Anti-Prion Molecules, Katherine Do May 2019

Development Of A High-Throughput System For Screening Of Anti-Prion Molecules, Katherine Do

Dissertations & Theses (Open Access)

The misfolded prion protein causes and transmits disease in both humans and animals. As other infectious agents, prions display strain variation, which can generate different pathological outcomes in affected individuals. Unfortunately, there are no known therapies for these diseases, which at present are invariably fatal. In this work, the Protein Misfolding Cyclic Amplification technology (PMCA, an in vitro test that replicates minimum quantities of infectious prions) has been modified to screen for small molecules inhibiting prion protein misfolding in a strain-specific manner. In order to approach a high-throughput PMCA system, technical aspects in PMCA has been optimized for application of …


A Hidden Markov Factor Analysis Framework For Seizure Detection In Epilepsy Patients, Mahboubeh Madadi May 2019

A Hidden Markov Factor Analysis Framework For Seizure Detection In Epilepsy Patients, Mahboubeh Madadi

Graduate Theses and Dissertations

Approximately 1% of the world population suffers from epilepsy. Continuous long-term electroencephalographic (EEG) monitoring is the gold-standard for recording epileptic seizures and assisting in the diagnosis and treatment of patients with epilepsy. Detection of seizure from the recorded EEG is a laborious, time consuming and expensive task. In this study, we propose an automated seizure detection framework to assist electroencephalographers and physicians with identification of seizures in recorded EEG signals. In addition, an automated seizure detection algorithm can be used for treatment through automatic intervention during the seizure activity and on time triggering of the injection of a radiotracer to …


The 5-Ht1a-R Knockout Mouse As A Model Of Later Life Anxiety Disorders: Implications For Sex Differences, Tatyana Budylin May 2019

The 5-Ht1a-R Knockout Mouse As A Model Of Later Life Anxiety Disorders: Implications For Sex Differences, Tatyana Budylin

Dissertations, Theses, and Capstone Projects

Anxiety affects nearly twice as many women as it affects men across all cultures and economic groups. Importantly, girls have a higher chance of inheriting anxiety disorders than boys, and many anxiety disorders appear at a very young age. However, little is known about sex differences in brain and behavioral development and how they relate to anxiety in adulthood. Serotonin 1A receptor (5-HT1A-R) mediated signaling has been implicated in depression and anxiety, however most studies that focus on the involvement of the 5-HT1A-R have been conducted in adults. Little is known about how the 5-HT1A …


Glycine Receptor Expression Across Identified Retinal Ganglion Cell Types., Ian Scot Pyle May 2019

Glycine Receptor Expression Across Identified Retinal Ganglion Cell Types., Ian Scot Pyle

Electronic Theses and Dissertations

Retinal ganglion cells (RGCs) represent the culmination of all retinal signaling and their output forms the substrate for vision throughout the rest of the brain. About 40 different RGC types have been defined by differences in their visually evoked responses, morphology, and genetic makeup. These responses arise from interactions between inhibition and excitation throughout the retinal circuit (Franke et al., 2017; Masland, 2012; Sanes & Masland, 2015; Werblin, 2011). Unlike most other areas of the central nervous system (CNS), the retina utilizes both GABA and glycine inhibitory neurotransmitters to refine glutamatergic excitatory signals (Franke & Baden, 2017; Werblin, 2011; C. …


The Master Synaptic Regulator: Activity Regulated Cytoskeleton Associated Protein, Arc, In Normal Aging And Diseases With Cognitive Impairment, Amber Khan Feb 2019

The Master Synaptic Regulator: Activity Regulated Cytoskeleton Associated Protein, Arc, In Normal Aging And Diseases With Cognitive Impairment, Amber Khan

Dissertations, Theses, and Capstone Projects

Alzheimer’s disease (AD) is a progressive neurodegenerative disease with complex underlying pathogenic mechanisms. Epidemiological studies have forecasted that in the next 3 decades, the number of AD cases will rise to epidemic proportions with enormous medical, emotional and financial burdens impacting individuals affected and society. Among many risk factors for AD, advancing age is clearly essential and necessary. Revelation of molecular changes in synaptic activities leading to the prodromal, mild cognitive impairment (MCI) stage may help illuminate the course of pathogenic progression and its cause-effect relationship with various targets thereby enabling target-driven disease-modifying therapeutic agents for AD.

Activity-regulated cytoskeleton-associated (Arc) …


Ck2 Negatively Regulates 5-Ht4 Receptor Signaling In The Prefrontal Cortex And Mediates Depression-Like Behaviors, Julia Castello Saval Feb 2019

Ck2 Negatively Regulates 5-Ht4 Receptor Signaling In The Prefrontal Cortex And Mediates Depression-Like Behaviors, Julia Castello Saval

Dissertations, Theses, and Capstone Projects

The serotonergic system has been the major candidate in the pathophysiology of mood related disorders such as anxiety and major depressive disorder (MDD). Unfortunately, current antidepressant drugs are ineffective in 50% of the population and require chronic administration for a period of 3-6 weeks before the onset of therapeutic response. 5-HT4 receptor (5-HT4R) agonists have emerged as potential candidates for fast antidepressant action, since an antidepressant response can be achieved after 3 days of pharmacological administration in rodents.

This dissertation aims to investigate the role of casein kinase 2 (CK2) as a regulator of 5-HT4R expression …


Structure-Activity Relationship Studies Of Synthetic Cathinones And Related Agents, Rachel A. Davies Jan 2019

Structure-Activity Relationship Studies Of Synthetic Cathinones And Related Agents, Rachel A. Davies

Theses and Dissertations

Synthetic cathinones and related agents represent an international drug abuse problem, and at the same time an important class of clinically useful compounds. Structure-activity relationship studies are needed to elucidate molecular features underlying the pharmacology of these agents. Illicit methcathinone (i.e., MCAT), the prototype of the synthetic cathinone class, exists as a racemic mixture. Though the differences in potency and target selectivity between the positional and optical isomers of synthetic cathinones and related agents have been demonstrated to have important implications for abuse and therapeutic potential, the two MCAT isomers have never been directly compared at their molecular targets: the …


Investigating The Role Of Neuronal Aging In Fragile X-Associated Tremor/Ataxia Syndrome, Katlin Marie Hencak Jan 2019

Investigating The Role Of Neuronal Aging In Fragile X-Associated Tremor/Ataxia Syndrome, Katlin Marie Hencak

Honors Undergraduate Theses

Fragile X-associated tremor/ataxia syndrome (FXTAS) is an X-linked late-onset neurodegenerative disorder caused by a noncoding trinucleotide repeat expansion in the FMR1 gene. This gene produces fragile x mental retardation protein (FMRP), an RNA binding protein whose targets are involved in brain development and synaptic plasticity. One of the proposed mechanisms of FXTAS pathogenesis is an RNA gain-of-function in which the repeat expansion causes toxic mRNA that sequesters important proteins in the cell, interfering with their functions. Another suggested method of pathogenesis is through a mutant protein called FMRpolyG. This protein results from repeat-associated non-AUG (RAN) translation, in which the expanded …


Improving Dopamine Monitoring With Ncam And The Effects Of Intranasal Oxytocin On Dopamine Signaling In The Rat Brain, Darren Earl Ginder Jan 2019

Improving Dopamine Monitoring With Ncam And The Effects Of Intranasal Oxytocin On Dopamine Signaling In The Rat Brain, Darren Earl Ginder

EWU Masters Thesis Collection

Dopamine (DA) is a neurohormone highly involved in learning and memory. Oxytocin (OXT), another neurohormone, has also been implicated in learning and memory. Fast-scan cyclic voltammetry (FSCV) is a method used for the real-time examination of DA neurotransmission in the brain. Implanting FSCV electrodes is an invasive technique that likely results in an inflammatory response (i.e. gliosis) that can restrict FSCV recording of DA signals. Neural cell adhesion molecule (NCAM) may reduce gliosis and potentially improve the ability of FSCV electrodes to monitor DA signaling. Chapter 1 Methods: FSCV electrodes were coated with NCAM and implanted in the rat brain. …


Mutations Of Fus Cause Aggregation Of Rna Binding Proteins, Disruptions In Protein Synthesis, And Dysregulation Of Nonsense Mediated Decay, Marisa Elizabeth Kamelgarn Jan 2019

Mutations Of Fus Cause Aggregation Of Rna Binding Proteins, Disruptions In Protein Synthesis, And Dysregulation Of Nonsense Mediated Decay, Marisa Elizabeth Kamelgarn

Theses and Dissertations--Toxicology and Cancer Biology

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron death and subsequent muscle atrophy. Approximately 15% of ALS cases are inheritable, and mutations in the Fused in Sarcoma (FUS) gene contribute to approximately 5% of these cases, as well as about 2% of sporadic cases. FUS performs a diverse set of cellular functions, including being a major regulator of RNA metabolism. FUS undergoes liquid- liquid phase transition in vitro, allowing for its participation in stress granules and RNA transport granules. Phase transition also contributes to the formation of cytoplasmic inclusions found in the …


Investigating Neurogenesis As A Veritable Epigenetic Endophenotype For Alzheimer's Disease, Layne Wells Jan 2019

Investigating Neurogenesis As A Veritable Epigenetic Endophenotype For Alzheimer's Disease, Layne Wells

Scripps Senior Theses

Alzheimer's disease (AD) is the most common neurodegenerative disease, characterized by progressive amyloid plaque aggregation, neurofibrillary tangles, and cortical tissue death. As the prevalence of AD is projected to climb in coming years, there is a vested interest in identifying endophenotypes by which to improve diagnostics and direct clinical interventions. The risk for complex disorders, such as AD, is influenced by multiple genetic, environmental, and lifestyle factors. Significant strides have been made in identifying genetic variants linked to AD through the genome-wide association study (GWAS). It has been estimated in more recent years, however, that GWAS-identified variants account for limited …


Autologous Peripheral Nerve Grafts To The Brain For The Treatment Of Parkinson's Disease, Andrew Welleford Jan 2019

Autologous Peripheral Nerve Grafts To The Brain For The Treatment Of Parkinson's Disease, Andrew Welleford

Theses and Dissertations--Neuroscience

Parkinson’s disease (PD) is a disorder of the nervous system that causes problems with movement (motor symptoms) as well as other problems such as mood disorders, cognitive changes, sleep disorders, constipation, pain, and other non-motor symptoms. The severity of PD symptoms worsens over time as the disease progresses, and while there are treatments for the motor and some non-motor symptoms there is no known cure for PD. Thus there is a high demand for therapies to slow the progressive neurodegeneration observed in PD. Two clinical trials at the University of Kentucky College of Medicine (NCT02369003, NCT01833364) are currently underway that …


Neuroprotective Strategies Following Experimental Traumatic Brain Injury: Lipid Peroxidation-Derived Aldehyde Scavenging And Inhibition Of Mitochondrial Permeability Transition, Jacqueline Renee Kulbe Jan 2019

Neuroprotective Strategies Following Experimental Traumatic Brain Injury: Lipid Peroxidation-Derived Aldehyde Scavenging And Inhibition Of Mitochondrial Permeability Transition, Jacqueline Renee Kulbe

Theses and Dissertations--Neuroscience

Traumatic brain injury (TBI) represents a significant health crisis. To date there are no FDA-approved pharmacotherapies available to prevent the neurologic deficits caused by TBI. Following TBI, dysfunctional mitochondria generate reactive oxygen and nitrogen species, initiating lipid peroxidation (LP) and the formation of LP-derived neurotoxic aldehydes, which bind mitochondrial proteins, exacerbating dysfunction and opening of the mitochondrial permeability pore (mPTP), resulting in extrusion of mitochondrial sequestered calcium into the cytosol, and initiating a downstream cascade of calpain activation, spectrin degradation, neurodegeneration and neurologic impairment.

As central mediators of the TBI secondary injury cascade, mitochondria and LP-derived neurotoxic aldehydes make promising …


Spag17 Deficiency Impairs Neuronal Cell Differentiation In Developing Brain, Olivia J. Choi Jan 2019

Spag17 Deficiency Impairs Neuronal Cell Differentiation In Developing Brain, Olivia J. Choi

Theses and Dissertations

The development of the nervous system is a multi-level, time-sensitive process that relies heavily on cell differentiation. However, the molecular mechanisms that control brain development remain poorly understood. We generated a knockout (KO) mouse for the cilia associated gene Spag17. These animals develop hydrocephalus and enlarged ventricles consistent with the role of Spag17 in the motility of ependymal cilia. However, other phenotypes that cannot be explained by this role were also present. Recently, a mutation in Spag17 has been associated with brain malformations and severe intellectual disability in humans. Therefore, we hypothesized that Spag17 plays a crucial role in …


The Role Of Syndecan-1 And Extracellular Vesicles In Breast Cancer Brain Metastasis, Megan R. Sayyad Jan 2019

The Role Of Syndecan-1 And Extracellular Vesicles In Breast Cancer Brain Metastasis, Megan R. Sayyad

Theses and Dissertations

Breast cancer metastasizes to the brain in 15-30% of all breast cancer cases, and metastasis is the predominant cause of breast cancer-related deaths. Patients with HER2-enriched and triple-negative breast cancers (TNBCs) are more likely to develop brain metastases. While targeted therapies exist for HER2-enriched breast cancers, there are no effective treatments for TNBCs. Thus, a greater understanding of how these cancers spread to the brain is critical. In order to spread to the brain, disseminated breast cancer cells must overcome 2 major steps—crossing the blood-brain barrier (BBB) and survival and successful colonization of the distinctive and mostly cellular brain environment. …