Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Molecular and Cellular Neuroscience

Molecular Analysis Of Cone Photoreceptor Genesis From A Specific Retinal Progenitor Population, Diego F. Buenaventura Feb 2019

Molecular Analysis Of Cone Photoreceptor Genesis From A Specific Retinal Progenitor Population, Diego F. Buenaventura

Dissertations, Theses, and Capstone Projects

There are two types of photosensitive cells of the retina that contribute to image formation: Cone photoreceptors that mediate color discrimination and rods that provide photosensitivity in low-light conditions. Given the importance of cones in high acuity and color vision, deficiencies in this cell type that result from ailments such as retinitis pigmentosa and macular degeneration can lead to a debilitating loss of vision. Currently, one of the most pressing goals in the field of retinal development is the elucidation of the gene regulatory networks (GRN) involved in inducing an undifferentiated cell into becoming a functional cone photoreceptor.

Recently, an …


Modeling 3d Retinogenesis In Mouse Embryonic Stem Cells Following Crispr-Mediated Crx Knockdown, Pooja Prasad May 2017

Modeling 3d Retinogenesis In Mouse Embryonic Stem Cells Following Crispr-Mediated Crx Knockdown, Pooja Prasad

Dissertations, Masters Theses, Capstones, and Culminating Projects

An emerging technology known as three-dimensional (3D) tissue engineering has allowed scientists to mimic tissues found in vivo. Previous studies indicate that it is possible to differentiate dissociated mouse embryonic stem cells (mESCs) into 3D retinal tissues in vitro (Bertacchi, 2015; Eiraku, 2012). The newly differentiated retinal tissues are said to encompass all of the major components found in retinal tissues. The generation of in vitro 3D tissues holds great potential in terms of patient-specific disease modeling. Although various diseases have been well-studied in animal models, there are limitations with regards to patient-specificity. The generation of animal models to study …


Retinal Ganglion Cell Differentiation And Transplantation, Jonathan Hertz Dec 2012

Retinal Ganglion Cell Differentiation And Transplantation, Jonathan Hertz

Jonathan Hertz

Adult central nervous system (CNS) neurons fail to regenerate following injury, and there is no repair or replacement of cells lost after injury or in neurodegenerative diseases. There is much interest in transplanting stem cell-derived neurons into the injured nervous system and enhancing the differentiation of donor cells into mature, integrated and functional neurons. Little is known, however, about what signals control the differentiation and integration of neurons, either during development or in the adult. Generating appropriate types of donor neurons from stem cells has been challenging because the signals that regulate neural subtype-specific fates are largely unknown. Therefore, it …