Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Molecular and Cellular Neuroscience

Novel Insights Into Oligodendrocyte Biology From Developmental Myelination Studies In Autophagy Deficient Mice And Analysis Of Oligodendrocyte Translatome Response To Contusive Spinal Cord Injury., Michael David Forston Aug 2023

Novel Insights Into Oligodendrocyte Biology From Developmental Myelination Studies In Autophagy Deficient Mice And Analysis Of Oligodendrocyte Translatome Response To Contusive Spinal Cord Injury., Michael David Forston

Electronic Theses and Dissertations

Loss of myelin causes severe neurological disorders and functional deficits in white matter injuries (WMI) such as traumatic spinal cord injury (SCI). This dissertation is focused on autophagy in OL development and the OL translatome after SCI. Chapter I describes the history of myelin, OL development, and their involvement in neurodegenerative diseases and SCI. The proteostasis network, in particular autophagy, and its contributions to white matter pathology is discussed. It concludes examining advantages and disadvantages of unbiased omics tools, like RiboTag, to study transcriptional/translational landscapes after SCI. Chapter II focuses on autophagy in OPC/OL differentiation, survival, and proper myelination in …


Qki-Mediated Cholesterol Biosynthesis In Eye Lens And Myelin Of The Central Nervous System, Seula Shin, Seula Shin Dec 2020

Qki-Mediated Cholesterol Biosynthesis In Eye Lens And Myelin Of The Central Nervous System, Seula Shin, Seula Shin

Dissertations & Theses (Open Access)

Cells obtain cholesterol in two ways, de novo biosynthesis and uptake from circulation. While most tissues utilize both sources, eye lens and brain depend extensively on cholesterol biosynthesis due to the limited supply from circulation. Lens cell membrane consists of highest portion of cholesterol. Brain is the most cholesterol-rich organ, which accounts for 23% of total cholesterol. Genetic mutations of cholesterol biosynthesis enzymes in humans and animal models present cataracts and hypomyelinating disorders linked to neurological impairment. Yet, it remains unclear how gene expression of cholesterol biosynthesis is regulated in lens and brain. Therefore, studying cholesterol biosynthesis in both tissues …


Qki-Mediated Cholesterol Biosynthesis In Eye Lens And Myelin Of The Central Nervous System, Seula Shin, Seula Shin Dec 2020

Qki-Mediated Cholesterol Biosynthesis In Eye Lens And Myelin Of The Central Nervous System, Seula Shin, Seula Shin

Dissertations & Theses (Open Access)

Cells obtain cholesterol in two ways, de novo biosynthesis and uptake from circulation. While most tissues utilize both sources, eye lens and brain depend extensively on cholesterol biosynthesis due to the limited supply from circulation. Lens cell membrane consists of highest portion of cholesterol. Brain is the most cholesterol-rich organ, which accounts for 23% of total cholesterol. Genetic mutations of cholesterol biosynthesis enzymes in humans and animal models present cataracts and hypomyelinating disorders linked to neurological impairment. Yet, it remains unclear how gene expression of cholesterol biosynthesis is regulated in lens and brain. Therefore, studying cholesterol biosynthesis in both tissues …


The Integration Of Multiple Sources Of Sonic Hedgehog In The Spinal Cord Contribute To The Production Of First-Born Oligodendrocyte Precursor Cells Which Become Critical For Synapse Remodeling In Response To Adult Motor Neuron Injury, Lev Starikov Feb 2019

The Integration Of Multiple Sources Of Sonic Hedgehog In The Spinal Cord Contribute To The Production Of First-Born Oligodendrocyte Precursor Cells Which Become Critical For Synapse Remodeling In Response To Adult Motor Neuron Injury, Lev Starikov

Dissertations, Theses, and Capstone Projects

Oligodendrocyte precursor cells (OPCs) arise sequentially first from a ventral and then from a dorsal precursor domain during spinal cord development. Whether the sequential production of OPCs is of physiological significance has not been examined. Here I show that interrupting Sonic hedgehog (Shh) signaling originating from nascent ventricular zone derivatives (VZD), motor neurons and the lateral floor plate, almost completely blocks ventral but not dorsal oligodendrogenesis without noticeably affecting early tissue patterning and embryonic development. In the absence of ventral OPCs, dorsal OPCs increase proliferation and populate the entire spinal cord with increased density. In these mutant mice, dOPCs take …