Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Molecular and Cellular Neuroscience

Qki-Mediated Cholesterol Biosynthesis In Eye Lens And Myelin Of The Central Nervous System, Seula Shin, Seula Shin Dec 2020

Qki-Mediated Cholesterol Biosynthesis In Eye Lens And Myelin Of The Central Nervous System, Seula Shin, Seula Shin

Dissertations & Theses (Open Access)

Cells obtain cholesterol in two ways, de novo biosynthesis and uptake from circulation. While most tissues utilize both sources, eye lens and brain depend extensively on cholesterol biosynthesis due to the limited supply from circulation. Lens cell membrane consists of highest portion of cholesterol. Brain is the most cholesterol-rich organ, which accounts for 23% of total cholesterol. Genetic mutations of cholesterol biosynthesis enzymes in humans and animal models present cataracts and hypomyelinating disorders linked to neurological impairment. Yet, it remains unclear how gene expression of cholesterol biosynthesis is regulated in lens and brain. Therefore, studying cholesterol biosynthesis in both tissues …


Qki-Mediated Cholesterol Biosynthesis In Eye Lens And Myelin Of The Central Nervous System, Seula Shin, Seula Shin Dec 2020

Qki-Mediated Cholesterol Biosynthesis In Eye Lens And Myelin Of The Central Nervous System, Seula Shin, Seula Shin

Dissertations & Theses (Open Access)

Cells obtain cholesterol in two ways, de novo biosynthesis and uptake from circulation. While most tissues utilize both sources, eye lens and brain depend extensively on cholesterol biosynthesis due to the limited supply from circulation. Lens cell membrane consists of highest portion of cholesterol. Brain is the most cholesterol-rich organ, which accounts for 23% of total cholesterol. Genetic mutations of cholesterol biosynthesis enzymes in humans and animal models present cataracts and hypomyelinating disorders linked to neurological impairment. Yet, it remains unclear how gene expression of cholesterol biosynthesis is regulated in lens and brain. Therefore, studying cholesterol biosynthesis in both tissues …


Methylmercury Cytotoxicity On Developing Neuronal Lineages And Differences In Susceptibility Based On Media Type, Madeline Henley Aug 2020

Methylmercury Cytotoxicity On Developing Neuronal Lineages And Differences In Susceptibility Based On Media Type, Madeline Henley

The Journal of Purdue Undergraduate Research

No abstract provided.


Characterization Of Neuronal Differentiation And Activity In Human-Induced Pluripotent Neural Stem Cells, Allison Biddinger Aug 2020

Characterization Of Neuronal Differentiation And Activity In Human-Induced Pluripotent Neural Stem Cells, Allison Biddinger

The Journal of Purdue Undergraduate Research

No abstract provided.


Preliminary Evidence Of The Role Of Medial Prefrontal Cortex In Self-Enhancement: A Transcranial Magnetic Stimulation Study, Birgitta Taylor-Lillquist, Vivek Kanpa, Maya Crawford, Mehdi El Filali, Julia Oakes, Alex Jonasz, Amanda Disney, Julian Keenan Aug 2020

Preliminary Evidence Of The Role Of Medial Prefrontal Cortex In Self-Enhancement: A Transcranial Magnetic Stimulation Study, Birgitta Taylor-Lillquist, Vivek Kanpa, Maya Crawford, Mehdi El Filali, Julia Oakes, Alex Jonasz, Amanda Disney, Julian Keenan

Department of Biology Faculty Scholarship and Creative Works

Humans employ a number of strategies to improve their position in their given social hierarchy. Overclaiming involves presenting oneself as having more knowledge than one actually possesses, and it is typically invoked to increase one’s social standing. If increased expectations to possess knowledge is a perceived social pressure, such expectations should increase bouts of overclaiming. As the medial prefrontal cortex (MPFC) is sensitive to social pressure and disruption of the MPFC leads to decreases in overclaiming, we predicted that transcranial magnetic stimulation (TMS) applied to the MPFC would reduce overclaiming and the effects would be enhanced in the presence of …


Sexually Dimorphic Alterations In Brain Morphology Of Astrocyte Conditional System Xc- Knockout Mice, Gabrielle Emily Samulewicz May 2020

Sexually Dimorphic Alterations In Brain Morphology Of Astrocyte Conditional System Xc- Knockout Mice, Gabrielle Emily Samulewicz

Biology - All Scholarship

Astrocytes play a vital role in orchestrating the precise brain wiring that occurs during development and are essential for maintaining homeostasis into adulthood. The cystine/glutamate antiporter, system xc-, in the central nervous system is especially abundant in astrocytes and itself is known to contribute importantly to the basal extracellular glutamate concentration as well as the intracellular and extracellular glutathione levels, either of which, if perturbed, could alter brain development and/or contribute to degeneration. Thus, to determine whether loss of astrocyte system xc- might alter brain morphology, I studied a conditional astrocyte system xc- knockout mouse (AcKO). Tissue was harvested from …


Neurocognitive Risk Factors And Current Intervention Strategies For Survivors Of Pediatric Acute Lymphoblastic Leukemia, Abigail Taber May 2020

Neurocognitive Risk Factors And Current Intervention Strategies For Survivors Of Pediatric Acute Lymphoblastic Leukemia, Abigail Taber

Senior Honors Theses

The improved survival rate for pediatric cancer patients is one of the greatest triumphs of recent medicine, but the late effects faced by these survivors have been uncovered through this new population of survivors. Many survivors of pediatric acute lymphoblastic leukemia (ALL) experience cognitive deficits in areas such as attention, memory, processing speed, and academic achievement following cancer treatment. Recent research has pointed to chemotherapeutic agents, host risk factors, and genetic predispositions as perpetrators of these deficits, although other factors are also under investigation. Consequently, the search for appropriate interventions for the amelioration of these deficits has dominated the literature …


Developing Tadpoles Exhibit Metabolic And Organ Size Plasticity In Competitive Rearing Environments, Emma Kimberly Apr 2020

Developing Tadpoles Exhibit Metabolic And Organ Size Plasticity In Competitive Rearing Environments, Emma Kimberly

Undergraduate Honors Thesis Projects

Abstract

Plasticity is the ability of an organism to respond to environmental variation by expressing different phenotypes. In Red-eyed treefrog tadpoles, Agalychnis callidryas, competitive environments induce long guts and short tails. Despite having a larger gut, tadpoles reared with competition do not increase intake when food becomes available. Pilot data suggest that this is because they have lower metabolic rates. The ability to maintain a larger gut with a depressed metabolic rate is confusing because guts are energetically expensive, and suggests that another energetic trade-off is taking place. The purpose of this study was to investigate the effect of …


Effect Of Reduced Neurogenesis On Microglial Activation, Amelia Smith Apr 2020

Effect Of Reduced Neurogenesis On Microglial Activation, Amelia Smith

Honors Scholars Collaborative Projects

The geriatric population of America has grown exponentially in the past century. Health degradations and expensive medical care are characteristic of this population with many of these costs due to age-related cognitive decline. It is essential to completely understand the mechanisms of normal and abnormal aging in the search for treatments for cognitive decline. A reduction of neurogenesis is a common factor in aging, but this reduction is even more drastic in individuals experiencing cognitive decline. It is unclear what effect reduced neurogenesis has on the extracellular environment, including glial cells. In particular, changes in microglial activation could be related …


Tissue-Specific Regulation Of Pnmt By Intron Retention During Neural Development, Meeti Mehta Jan 2020

Tissue-Specific Regulation Of Pnmt By Intron Retention During Neural Development, Meeti Mehta

Digital Repository: Showcase of Undergraduate Research Excellence

No abstract provided.


Focal Augmentation Of Somatostatin Interneuron Function And Subsequent Circuit Effects In Developmentally Malformed, Epileptogenic Cortex, Nicole Ekanem Jan 2020

Focal Augmentation Of Somatostatin Interneuron Function And Subsequent Circuit Effects In Developmentally Malformed, Epileptogenic Cortex, Nicole Ekanem

Theses and Dissertations

Drug-resistant epilepsy (DRE) is a common clinical sequela of developmental cortical malformations such as polymicrogyria. Unfortunately, much remains unknown about the aberrant GABA-mediated circuit alterations that underlie DRE's onset and persistence in this context. To address this knowledge gap, we utilized the transcranial freeze lesion model in optogenetic mice lines (Somatostatin (SST)-Cre or Parvalbumin (PV)-Cre x floxed channelrhodopsin-2) to dissect features of the SST, PV, and pyramidal neuron microcircuit that are potentially associated with DRE. Investigations took place within developmental microgyria’s known pathological substrate, the adjoined and epileptogenic paramicrogyral region (PMR). As well, microcircuit relationships within the previously unexplored range …


Characterizing The Requirements For The Matricellular Protein, Dccn, In Nervous System Function, Elizabeth L. Catudio Garrett Jan 2020

Characterizing The Requirements For The Matricellular Protein, Dccn, In Nervous System Function, Elizabeth L. Catudio Garrett

Graduate Student Theses, Dissertations, & Professional Papers

The brain is organized as a complex network of specialized neurons that communicate via a combination of electrical and chemical signals. Our brains function to generate movement, control organ function, or direct complex behaviors; all of which requires the ability to regulate the flow of communication between circuits and networks. Work in this thesis addresses two areas of neuron communication: first, how does the release of more than one neurotransmitter from a single neuron impact behavior, and second, are matricellular proteins (MCPs) key contributors to synaptic transmission and neuron function? The conserved CCN family of MCPs have a …