Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Molecular and Cellular Neuroscience

Organization And Development Of Cholinergic Input To The Mouse Visual Thalamus., Guela Sokhadze Aug 2018

Organization And Development Of Cholinergic Input To The Mouse Visual Thalamus., Guela Sokhadze

Electronic Theses and Dissertations

Cholinergic signaling plays a vital role in modulating the flow of sensory information through thalamic circuits in a state-dependent manner. In the dorsal lateral geniculate nucleus (dLGN), the thalamic visual relay, release of acetylcholine (ACh) contributes to enhanced thalamocortical transfer of retinal signal during behavioral states of arousal, wakefulness, and sleep/wake transitions. Moreover, ACh modulates activity of the thalamic reticular nucleus (TRN), a structure which provides inhibitory input to dLGN. While several cholinergic nuclei have been shown to innervate dLGN and TRN, it is unclear how projections from each area are organized. Furthermore, little is known of how or when …


Modeling And Mapping Addiction In The Zebrafish, Danio Rerio, Bradley Serpa Jul 2018

Modeling And Mapping Addiction In The Zebrafish, Danio Rerio, Bradley Serpa

Master of Science in Integrative Biology Theses

Driven by the communication of dopamine, the vertebrate reward system has been evolutionarily conserved to maintain survival and optimize fitness. The neural circuits governing this system integrate sensory stimuli to produce appropriate, self-preserving responses that underlie experience-based learning. In the most primitive vertebrates, dopamine release in neuronal circuits drives homeostatic behaviors, such as seeking nutrients, finding a mate, or avoiding danger. From agnathans to mammals, dopaminergic synthesis and signaling genes and molecules, along with neuronal pathways and reward system-based behaviors, remain highly conserved. Dopamine signaling proteins include two classes of metabotropic G-Protein Receptor Coupled Dopamine Receptors, D1-like (DRD1) and D2-like …


Mapping Molecular Datasets Back To The Brain Regions They Are Extracted From: Remembering The Native Countries Of Hypothalamic Expatriates And Refugees, Arshad M. Khan, Alice H. Grant, Anais Martinez, Gully Apc Burns, Brendan S. Thatcher, Vishwanath T. Anekonda, Benjamin W. Thompson, Zachary S. Roberts, Daniel H. Moralejo, James E. Blevins Jun 2018

Mapping Molecular Datasets Back To The Brain Regions They Are Extracted From: Remembering The Native Countries Of Hypothalamic Expatriates And Refugees, Arshad M. Khan, Alice H. Grant, Anais Martinez, Gully Apc Burns, Brendan S. Thatcher, Vishwanath T. Anekonda, Benjamin W. Thompson, Zachary S. Roberts, Daniel H. Moralejo, James E. Blevins

Arshad M. Khan, Ph.D.

This article, which includes novel unpublished data along with commentary and analysis,
focuses on approaches to link transcriptomic, proteomic, and peptidomic datasets mined from
brain tissue to the original locations within the brain that they are derived from using digital atlas
mapping techniques. We use, as an example, the transcriptomic, proteomic and peptidomic
analyses conducted in the mammalian hypothalamus. Following a brief historical overview, we
highlight studies that have mined biochemical and molecular information from the hypothalamus
and then lay out a strategy for how these data can be linked spatially to the mapped locations in a
canonical brain atlas …


Examining The Appropriate Recovery Interval Following Maximal Exertion For Baseline Computerized Neurocognitive Testing (Cnt), Samantha Mohler May 2018

Examining The Appropriate Recovery Interval Following Maximal Exertion For Baseline Computerized Neurocognitive Testing (Cnt), Samantha Mohler

Graduate Theses and Dissertations

Background: Computerized neurocognitive testing is part of the recommended multi-faceted approach to SRC assessment. Prior research has suggested that maximal exertion negatively effects CNT test scores. Purpose: To identify the appropriate timing of the administration of CNT following maximal exertion in healthy college-aged students. Study Design: Random cross-over, repeated measures design. Methods: Participants will be administered CNT on four different visits, with at least one week between administrations. A VO2 max treadmill test will be performed before CNT administration during three of the four trials. Following the VO2 max test, participants will rest for <2 minutes (immediate), 10-minutes, or 20-minutes before taking CNT. The fourth trial, without maximal exertion preceding CNT administration, will serve as the control. All trials will be randomly-counterbalanced to negate practice effects. RESULTS: There was a significant within-subjects effect for prescribed post-exertion recovery intervals on total symptom scores (Wilks λ = .62, F [3, 23] = 4.64, p = .01, η2= .38). Total symptom scores were significantly higher at the immediate (p < .002), 10-minutes (p = .018), and 20-minutes (p = .011) post-exertion recovery intervals compared to baseline. Additionally, a significantly positive within-subjects effect for prescribed post exertion recovery was observed for processing speed (p=.009, Wilks λ = .60, F [3, 27] = 5.9, η2 = .396). No significant effect was observed for visual memory (p = .07), verbal memory (p = .06), or reaction time (p = .40). CONCLUSION: Baseline symptom scores were negatively influenced processing speed was enhanced by maximal exertion. These changes continue to be elevated 20 minutes post-exertion. Moreover, cognitive performance was not significantly impaired following maximal exercise. To obtain more accurate baseline symptom scores, and allow processing speed composites to return to normal, sports medicine professionals should wait at least 20 minutes following maximal exertion before administering CNT.


Neonatal Stimulation Of Pkc Epsilon Signaling Normalizes Fragile X-Associated Deficits In Pvn Oxytocin Expression And Later-Life Social And Anxiety Behavior, Alexandra E. Marsillo Feb 2018

Neonatal Stimulation Of Pkc Epsilon Signaling Normalizes Fragile X-Associated Deficits In Pvn Oxytocin Expression And Later-Life Social And Anxiety Behavior, Alexandra E. Marsillo

Dissertations, Theses, and Capstone Projects

Fragile X Syndrome (FXS) is an inherited developmental disorder characterized by disturbances in emotional and social behavior. Our studies have revealed suppressed hippocampal PKCε expression in Fmr1 knockout (KO) mice, the leading model of FXS. To compensate for this deficiency, we stimulated PKCε in neonatal KO mice by administering a selective PKCε activator, dicyclopropyl-linoleic acid (DCP-LA), and studied its effect on ventral hippocampal neurons and a proximal target of the ventral hippocampus, the hypothalamus, which regulates social and emotional behavior. We observed that at postnatal day 18 (P18), vehicle-treated KO mice displayed increased surface localization of the 3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) …