Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular and Cellular Neuroscience

Reactive Oxygen Species-Mediated Neurodegeneration Is Independent Of The Ryanodine Receptor In Caenorhabditis Elegans, Lyndsay E.A. Young, Daniel C. Williams Oct 2015

Reactive Oxygen Species-Mediated Neurodegeneration Is Independent Of The Ryanodine Receptor In Caenorhabditis Elegans, Lyndsay E.A. Young, Daniel C. Williams

Journal of the South Carolina Academy of Science

Despite the significant impacts on human health caused by neurodegeneration, our understanding of the degeneration process is incomplete. The nematode Caenorhabditis elegans is emerging as a genetic model organism well suited for identification of conserved cellular mechanisms and molecular pathways of neurodegeneration. Studies in the worm have identified factors that contribute to neurodegeneration, including excitotoxicity and stress due to reactive oxygen species (ROS). Disruption of the gene unc-68, which encodes the ryanodine receptor, abolishes excitotoxic cell death, indicating a role for calcium (Ca2+) signaling in neurodegeneration. We tested the requirement for unc-68 in ROS-mediated neurodegeneration using the …


Fty720 (Fingolimod) Provides Insight Into The Molecular Mechanisms Of Multiple Sclerosis, Madelyn Elizabeth Crawford Jun 2014

Fty720 (Fingolimod) Provides Insight Into The Molecular Mechanisms Of Multiple Sclerosis, Madelyn Elizabeth Crawford

Pursuit - The Journal of Undergraduate Research at The University of Tennessee

Multiple sclerosis (MS) is a neurodegenerative disorder caused by a prolonged immune- mediated inflammatory response that targets myelin. Nearly all of the drugs approved for the treatment of MS are general immunosuppressants or only function in symptom management. The oral medication fingolimod, however, is reported to have direct therapeutic effects on cells of the central nervous system in addition to immunomodulatory functions. Fingolimod is known to interact with sphingosine-1-phosphate (S1P) receptors, and the most widely- accepted theory for its mechanism of action is functional antagonism of the receptor. This review examines significant neuromodulatory effects achieved by functional antagonism of the …