Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Molecular and Cellular Neuroscience

Towards A New Role Of Mitochondrial Hydrogen Peroxide In Synaptic Function, Cliyahnelle Z. Alexander May 2024

Towards A New Role Of Mitochondrial Hydrogen Peroxide In Synaptic Function, Cliyahnelle Z. Alexander

Student Theses and Dissertations

Aerobic metabolism is known to generate damaging ROS, particularly hydrogen peroxide. Reactive oxygen species (ROS) are highly reactive molecules containing oxygen that have the potential to cause damage to cells and tissues in the body. ROS are highly reactive atoms or molecules that rapidly interact with other molecules within a cell. Intracellular accumulation can result in oxidative damage, dysfunction, and cell death. Due to the limitations of H2O2 (hydrogen peroxide) detectors, other impacts of ROS exposure may have been missed. HyPer7, a genetically encoded sensor, measures hydrogen peroxide emissions precisely and sensitively, even at sublethal levels, during …


Methamphetamine-Induced Dna Double-Stranded Breaks: The Impact Of The Dopamine Transporter And Insights Into The Mechanisms Of Dna Damage In Mouse Neuro 2a Cells, Lizette Couto Feb 2024

Methamphetamine-Induced Dna Double-Stranded Breaks: The Impact Of The Dopamine Transporter And Insights Into The Mechanisms Of Dna Damage In Mouse Neuro 2a Cells, Lizette Couto

Dissertations, Theses, and Capstone Projects

Methamphetamine (METH) abuse remains a global health concern, with emerging evidence highlighting its genotoxic potential. In the central nervous system METH enters dopaminergic cells primarily through the dopamine transporter (DAT), which controls the dynamics of dopamine (DA) neurotransmission by driving the reuptake of extracellular DA into the presynaptic neuronal cell. Additional effects of METH on the storage of DA in synaptic vesicles lead to the dysregulated cytosolic accumulation of DA. Previous studies have shown that after METH disrupts intracellular vesicular stores of DA, the excess DA in the cytosol is rapidly oxidized. This generates an abundance of reactive oxygen species …


Validating A New In Vivo Model To Study Als, Izabela J. Cimachowska May 2023

Validating A New In Vivo Model To Study Als, Izabela J. Cimachowska

Student Theses and Dissertations

Buildup of oxidative stress and mitochondrial dysfunction are well known characteristics of both sporadic and hereditary amyotrophic lateral sclerosis (ALS). While both forms of the disease seem to arise from common cellular dysfunction, the genetic disease is studied to a much greater extent. Engineering novel animal models of the sporadic form of the disease is crucial for development of druggable targets to treat ALS and understand the underlying mechanisms. Interestingly, accumulation of oxidative stress by exacerbated emission of reactive oxygen species (ROS) from presynaptic mitochondria is a hallmark of both hereditary and sporadic ALS. Previous work by our laboratory showed …


Clustered Protocadherins Ubiquitination And Phosphorylation Regulates Surface Expression, Albert Ptashnik Sep 2022

Clustered Protocadherins Ubiquitination And Phosphorylation Regulates Surface Expression, Albert Ptashnik

Dissertations, Theses, and Capstone Projects

Clustered protocadherins (Pcdhs) are a family of 60 adhesion-like molecules forming a neural barcode. In vertebrate neurons, 60 Pcdhs are coded by a large gene cluster. Numerous axons in the cluster are coding for the different extracellular, transmembrane, variable portion of the cytoplasmic and constant cytoplasmic domains where their expression is controlled epigenetically. These proteins mediate interactions between axons, dendrites, and glial cells during neural development. Yet, Pcdhs are not strictly adhesion molecules. In the amacrine cells of the retina, Pcdhs promote avoidance of the same cell dendrites, where in the cortex Pcdhs promote interactions between dendrites and astrocytes. In …


Investigation Of Notch Signaling In Cone Fate Specification In Vertebrate Retina, Xueqing Chen Sep 2021

Investigation Of Notch Signaling In Cone Fate Specification In Vertebrate Retina, Xueqing Chen

Dissertations, Theses, and Capstone Projects

In the vertebrate retina, cone photoreceptors are crucial for high acuity color vision. Several retinal diseases lead to loss of cones and there is a need to identify the normal developmental genesis of these cells to inform the development of stem cell-based therapies. Cone genesis has previously been shown to be repressed by Notch signaling, however, the mechanism by which Notch signaling controls cone fate determination is still unclear. It has been identified that cone photoreceptors are formed from multipotent retinal progenitor cells (RPCs) that first generate genetically-defined, restricted RPCs with limited mitotic and fate potential to preferentially form cones …


Mitochondrial Distribution Of Glycine Receptors In Motor Neuron Cell Lines, Katsiaryna Milashevich May 2021

Mitochondrial Distribution Of Glycine Receptors In Motor Neuron Cell Lines, Katsiaryna Milashevich

Student Theses and Dissertations

Although non-essential, glycine plays an important role in major metabolic reactions and is most known for its anti-inflammatory effects. An accumulation of contemporary research has shown that glycine is able to stabilize membrane potential using glycine receptors at the cellular level and to protect mitochondrial function directly, whether it is from inflammation, heavy metal poisoning, or ischemia-induced neuroinflammation. In this research, the existence of a hypothetical mitochondrial glycine receptor is examined. Immunofluorescence imaging was used to examine the presence of the glycine receptor subunits alpha 1 and alpha 2 in both non- differentiated and differentiated neuroblastoma cell lines. The preliminary …


Expression Analyses Of Hippocampal And Cortical Proteins In A Rat Model For Alzheimer’S Disease, Rangon Islam May 2020

Expression Analyses Of Hippocampal And Cortical Proteins In A Rat Model For Alzheimer’S Disease, Rangon Islam

Theses and Dissertations

Currently, Alzheimer’s disease (AD) has no cure. Using a rat AD model, we identified aberrantly expressed proteins during pre-pathology as potential biomarkers. The expression of certain biomarkers was reversed by diazoxide, a repurposed hypertension drug. These results suggest that drug repurposing at an early stage of AD has therapeutic potential.


Hyaluronan At The Brain-Environment Interface, Donald M. Thevalingam Sep 2019

Hyaluronan At The Brain-Environment Interface, Donald M. Thevalingam

Dissertations, Theses, and Capstone Projects

Hyaluronan (HA; Hyaluronic Acid), a primary scaffolding component of the brain extracellular matrix, serves as an integral structural component to the brain extracellular space (ECS). The fossorial African naked mole-rat (Heterocephalus glaber; NM-R), a mammal which lives in a low-oxygen environment and is capable of tolerating hypoxia and hypercapnia, has been shown to synthesize and sustain a unique high-molecular-mass variant of hyaluronan macromolecule (HMM-HA). This body of work highlights HA’s role in mediating the interplay between brain ECM composition, ECS structure, and cell viability.

Here we employ the NM-R as a unique animal model to observe the role of the …


The 5-Ht1a-R Knockout Mouse As A Model Of Later Life Anxiety Disorders: Implications For Sex Differences, Tatyana Budylin May 2019

The 5-Ht1a-R Knockout Mouse As A Model Of Later Life Anxiety Disorders: Implications For Sex Differences, Tatyana Budylin

Dissertations, Theses, and Capstone Projects

Anxiety affects nearly twice as many women as it affects men across all cultures and economic groups. Importantly, girls have a higher chance of inheriting anxiety disorders than boys, and many anxiety disorders appear at a very young age. However, little is known about sex differences in brain and behavioral development and how they relate to anxiety in adulthood. Serotonin 1A receptor (5-HT1A-R) mediated signaling has been implicated in depression and anxiety, however most studies that focus on the involvement of the 5-HT1A-R have been conducted in adults. Little is known about how the 5-HT1A …


A Novel Kinesin Adapter Directly Mediates Dendritic Mrna Localization During Synapse Development, Hao Wu May 2019

A Novel Kinesin Adapter Directly Mediates Dendritic Mrna Localization During Synapse Development, Hao Wu

Dissertations, Theses, and Capstone Projects

Cytoskeleton based active transport with motor proteins is essential for mRNA localization and local protein translation in animal cells, yet how mRNA granules interact with motor proteins remains poorly understood. Using an unbiased screen for interaction between mRNA binding proteins (RBP) and motor proteins, we identified protein interacting with APP tail 1 (PAT1) as a potential direct adapter between the β-actin mRNA Zipcode-binding protein 1 (ZBP1) and Kinesin-1 motor complex.

Mouse PAT1 is similar to the Kinesin Light Chain (KLC) in amino acid sequence and binds directly to KLC. High-resolution images from structured illumination microscopy (SIM) indicates that synaptic stimulation …


Molecular Analysis Of Cone Photoreceptor Genesis From A Specific Retinal Progenitor Population, Diego F. Buenaventura Feb 2019

Molecular Analysis Of Cone Photoreceptor Genesis From A Specific Retinal Progenitor Population, Diego F. Buenaventura

Dissertations, Theses, and Capstone Projects

There are two types of photosensitive cells of the retina that contribute to image formation: Cone photoreceptors that mediate color discrimination and rods that provide photosensitivity in low-light conditions. Given the importance of cones in high acuity and color vision, deficiencies in this cell type that result from ailments such as retinitis pigmentosa and macular degeneration can lead to a debilitating loss of vision. Currently, one of the most pressing goals in the field of retinal development is the elucidation of the gene regulatory networks (GRN) involved in inducing an undifferentiated cell into becoming a functional cone photoreceptor.

Recently, an …


The Integration Of Multiple Sources Of Sonic Hedgehog In The Spinal Cord Contribute To The Production Of First-Born Oligodendrocyte Precursor Cells Which Become Critical For Synapse Remodeling In Response To Adult Motor Neuron Injury, Lev Starikov Feb 2019

The Integration Of Multiple Sources Of Sonic Hedgehog In The Spinal Cord Contribute To The Production Of First-Born Oligodendrocyte Precursor Cells Which Become Critical For Synapse Remodeling In Response To Adult Motor Neuron Injury, Lev Starikov

Dissertations, Theses, and Capstone Projects

Oligodendrocyte precursor cells (OPCs) arise sequentially first from a ventral and then from a dorsal precursor domain during spinal cord development. Whether the sequential production of OPCs is of physiological significance has not been examined. Here I show that interrupting Sonic hedgehog (Shh) signaling originating from nascent ventricular zone derivatives (VZD), motor neurons and the lateral floor plate, almost completely blocks ventral but not dorsal oligodendrogenesis without noticeably affecting early tissue patterning and embryonic development. In the absence of ventral OPCs, dorsal OPCs increase proliferation and populate the entire spinal cord with increased density. In these mutant mice, dOPCs take …