Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Molecular and Cellular Neuroscience

Comparison Of Nickel And Cobalt Induced Hypoxic Cell Models Using Cell Proliferation Assay, Melissa Delcasale Jul 2019

Comparison Of Nickel And Cobalt Induced Hypoxic Cell Models Using Cell Proliferation Assay, Melissa Delcasale

Seton Hall University Dissertations and Theses (ETDs)

Hypoxia is an imbalance in oxygen delivery and oxygen consumption, ultimately affecting cell survival. Low levels of oxygen diminish adenosine triphosphate synthesis resulting from a decline in oxidative phosphorylation in the mitochondria, therefore inducing apoptosis and cell death. To create a hypoxia mimicked environment, we used hypoxia mimetic compounds cobalt and nickel to treat human neuroblastoma (NMB) cells. Using hypoxic mimic human neuronal cell models, we examined and compared the effects of compound-induced hypoxia on NMB cell proliferation. The cells were treated with 100mM and 300mM concentrations of each compound at 24- and 48-hour intervals. To investigate cell proliferation, the …


Targeted Genome-Scale Gene Activation And Gene Editing In Human Cells To Understand Disease Models, Michael De La Cruz May 2019

Targeted Genome-Scale Gene Activation And Gene Editing In Human Cells To Understand Disease Models, Michael De La Cruz

KGI Theses and Dissertations

Since the discovery of sequence directed DNA editing reagents such as CRISPR-Cas9 RNA-guided and TALEN DNA endonucleases, there has been a snowball of advances in the life sciences due to the ability to efficiently edit and control genomes within living cells. CRISPR-Cas9 based genomic tools, which facilitate the high-throughput precise manipulation of genes, allow for unbiased functional genomic screens. We used a human CRISPR-Cas9 Synergistic Activation Mediator pooled library which utilizes an engineered protein complex for transcriptional activation of 23,430 endogenous genes to investigate the development of novel resistance mechanisms to lung cancer targeted therapy, Erlotinib. We set out to …


Notch Inhibitors And The Bet Inhibitor Jq-1 Decrease The Growth Of Primary Tumor Cells Derived From A Novel Mouse Model Of C11orf95-Rela Induced Brain Tumor, Ericka Randazzo, Jesse Dunnack, Justin Fang, Joseph Loturco Phd May 2019

Notch Inhibitors And The Bet Inhibitor Jq-1 Decrease The Growth Of Primary Tumor Cells Derived From A Novel Mouse Model Of C11orf95-Rela Induced Brain Tumor, Ericka Randazzo, Jesse Dunnack, Justin Fang, Joseph Loturco Phd

University Scholar Projects

Brain tumors are the most common childhood solid malignancy, and because of remarkable advances in treating many cancers outside of the brain, they have become the leading cause of cancer mortality in children. Ependymomas are a class of brain tumors which can be further subdivided into three groups based upon their location and genetic features. Of the three classes, supratentorial ependymomas are the only subgroup known to be marked by an oncogenic driver gene, which consists of a fusion mutation between the C11orf95 and RELA genes. C11orf95-RELA positive tumors are the most aggressive and lethal of …