Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Molecular and Cellular Neuroscience

Somatic Inhibition By Microscopic Magnetic Stimulation, Hui Ye Jun 2021

Somatic Inhibition By Microscopic Magnetic Stimulation, Hui Ye

Biology: Faculty Publications and Other Works

Electric currents can produce quick, reversible control of neural activity. Externally applied electric currents have been used in inhibiting certain ganglion cells in clinical practices. Via electromagnetic induction, a miniature-sized magnetic coil could provide focal stimulation to the ganglion neurons. Here we report that high-frequency stimulation with the miniature coil could reversibly block ganglion cell activity in marine mollusk Aplysia californica, regardless the firing frequency of the neurons, or concentration of potassium ions around the ganglion neurons. Presence of the ganglion sheath has minimal impact on the inhibitory effects of the coil. The inhibitory effect was local to the …


Data Collection Curated With An Application Ontology Describes The Methods And Results Upon Performing An Ex-Vivo Voltage-Clamp Assay On Outer Hair Cells Of The Mammalian Cochlea, Brenda Farrell, Jason Bengtson Jan 2019

Data Collection Curated With An Application Ontology Describes The Methods And Results Upon Performing An Ex-Vivo Voltage-Clamp Assay On Outer Hair Cells Of The Mammalian Cochlea, Brenda Farrell, Jason Bengtson

Research Data

This data collection describes the electrical properties of outer hair cells isolated from the mammalian cochlea of the domestic guinea pig. This data was obtained by performing whole-cell patch clamp voltage clamp assay on cells and monitoring the electrical admittance during a DC voltage ramp. The membrane capacitance was then calculated at each membrane potential from this admittance, and the voltage-independent and voltage-dependent membrane capacitance was determined upon further analysis. In some case the DC conductance was also measured by interrogation of the cell with voltage-step function which was calculated from the change in the mean steady-state current with respect …


Rescuing Acetylcholinesterase From Nerve Agent Inhibition: Protein Dynamics Driven Drug Discovery, Aiyana M. Emigh, Brian Bennion Jan 2013

Rescuing Acetylcholinesterase From Nerve Agent Inhibition: Protein Dynamics Driven Drug Discovery, Aiyana M. Emigh, Brian Bennion

STAR Program Research Presentations

Severe morbidity and mortality consequences result from irreversible inhibition of human acetylcholinesterase by organophosphates (OPs). Oxime-based reactivators are currently the only available treatments but lack efficacy in the central nervous system (CNS) where the most damage occurs. Computational docking and molecular dynamics (MD) simulations reveal complex structural barriers that may reduce oxime efficacy. These results may guide future drug designs of more effective countermeasures.