Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Molecular and Cellular Neuroscience

Role Of Nuclear Lamins In Oligodendrocyte Lineage Cells, Camila Yattah Sep 2022

Role Of Nuclear Lamins In Oligodendrocyte Lineage Cells, Camila Yattah

Dissertations, Theses, and Capstone Projects

Differentiation of oligodendrocytes from progenitor cells is a highly regulated process characterized by a series of molecular changes, resulting in nuclear and morphological features unique to the mature oligodendrocyte state. Heterochromatin formation starting at the nuclear periphery, as well as increased nuclear rigidity are characteristically observed. The nuclear periphery is characterized by the presence of the nuclear lamina and it has been implicated in higher-order genome organization in cells. Lamins are the protein components of the nuclear lamina, and their expression is dependent upon the cell differentiation stage of the cells. While Lamin B1 (LMNB1) expression is high in progenitors …


Third Harmonic Generation: A Method For Visualizing Myelin In The Murine Cerebral Cortex, Michael Redlich Feb 2021

Third Harmonic Generation: A Method For Visualizing Myelin In The Murine Cerebral Cortex, Michael Redlich

Dissertations, Theses, and Capstone Projects

Here we present the use of Third Harmonic Generation (THG) for the label-free imaging of myelinated axons in the murine cerebral cortex. Myelin plays an important role in the processes of learning and disease. However, much of the myelin biology research thus far has focused on white matter tracts where myelin is more visible. Much is still unknown, particularly with regard to myelin in gray matter. First, we engage in THG microscopy using an optical parametric oscillator pumped by a titanium-sapphire laser to demonstrate the utility of the technique for imaging myelin in vivo. Second, we investigate the use of …


Characterization Of The Transporter Protein Sodium-Potassium Adenosine Triphosphatase In The Myelin Membrane, Dara E C Schaefer Jan 2014

Characterization Of The Transporter Protein Sodium-Potassium Adenosine Triphosphatase In The Myelin Membrane, Dara E C Schaefer

Theses and Dissertations (Comprehensive)

Sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) is an integral membrane protein with known involvement in the maintenance of resting membrane potentials, nutrient uptake, cellular signal transduction, and cell-cell adhesion. The functional enzyme contains a catalytic alpha subunit and a glycosylated beta subunit, of which three isoforms of each are known to exist in the central nervous system (CNS). Altered expression and/or activity of Na+/K+-ATPase subunit isoforms has been previously implicated in the pathophysiology of several neurological disorders. This study characterized Na+/K+-ATPase expression and distribution in the myelin membrane, identified its …