Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular and Cellular Neuroscience

Development Of Fluorescence Based Approaches To Understand Astrocyte Biology In The Context Of Nicotine And Nicotinic Receptor Activity, Surya P. Aryal Jan 2022

Development Of Fluorescence Based Approaches To Understand Astrocyte Biology In The Context Of Nicotine And Nicotinic Receptor Activity, Surya P. Aryal

Theses and Dissertations--Chemistry

Smoking and tobacco use (STU) is a major global health problem and worldwide more than six million people die due to tobacco related diseases each year. Although majority of smokers try to quit smoking several times in their life, traditional therapeutic approaches, which focus only on neuronal cells, have a very low success rate. Understanding the effect of nicotine on glial cells, synaptic communication and blood vasculature in the brain can provide further insights on the neurobiology of substance abuse and can potentially help to design better therapeutic approaches. Glial cells are non-excitable cells in the brain which do not …


Doxorubicin-Induced, Tnf-Α-Mediated Brain Oxidative Stress, Neurochemical Alterations, And Cognitive Decline: Insights Into Mechanisms Of Chemotherapy Induced Cognitive Impairment And Its Prevention, Jeriel T. Keeney Jan 2013

Doxorubicin-Induced, Tnf-Α-Mediated Brain Oxidative Stress, Neurochemical Alterations, And Cognitive Decline: Insights Into Mechanisms Of Chemotherapy Induced Cognitive Impairment And Its Prevention, Jeriel T. Keeney

Theses and Dissertations--Chemistry

The works presented in this dissertation provide insights into the mechanisms of chemotherapy-induced cognitive impairment (CICI or “ChemoBrain”) and take steps toward outlining a preventive strategy. CICI is now widely recognized as a complication of cancer chemotherapy experienced by a large percentage of cancer survivors. Approximately fifty percent of existing FDA-approved anti-cancer drugs generate reactive oxygen species (ROS). Doxorubicin (Dox), a prototypical ROS-generating chemotherapeutic agent, produces the reactive superoxide radical anion (O2-•) in vivo. Dox treatment results in oxidation of plasma proteins, including ApoA-I, leading to TNF-α-mediated oxidative stress in plasma and brain. TNF-α elevation in brain …