Open Access. Powered by Scholars. Published by Universities.®

Computational Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Computational Neuroscience

Using Machine Learning To Identify Neural Mechanisms Underlying The Development Of Cognition In Children And Adolescents With Adhd, Brian Pho Oct 2022

Using Machine Learning To Identify Neural Mechanisms Underlying The Development Of Cognition In Children And Adolescents With Adhd, Brian Pho

Electronic Thesis and Dissertation Repository

Childhood and adolescence are marked by improvements to cognition and by the emergence of neurodevelopmental disorders such as attention deficit hyperactivity disorder (ADHD). What neural mechanisms are associated with cognitive development in ADHD? In this study, I applied machine learning models to functional connectivity profiles to identify patterns of network connectivity that predict various cognitive abilities in a group of participants ages 6 to 16 with ADHD. The models successfully predicted IQ, visual spatial, verbal comprehension, and fluid reasoning in children ages 6 to 11, but not adolescents. Furthermore, the models identified connections with the default mode, memory retrieval, and …


Performance Of Openbci Eeg Binary Intent Classification With Laryngeal Imagery, Nathan George, Samuel Kuhn Jul 2021

Performance Of Openbci Eeg Binary Intent Classification With Laryngeal Imagery, Nathan George, Samuel Kuhn

Regis University Faculty Publications (comprehensive list)

One of the greatest goals of neuroscience in recent decades has been to rehabilitate individuals who no longer have a functional relationship between their mind and their body. Although neuroscience has produced technologies which allow the brains of paralyzed patients to accomplish tasks such as spell words or control a motorized wheelchair, these technologies utilize parts of the brain which may not be optimal for simultaneous use. For example, if you needed to look at flashing lights to spell words for communication, it would be difficult to simultaneously look at where you are moving. To improve upon this issue, this …


The Characterization Of Alzheimer’S Disease And The Development Of Early Detection Paradigms: Insights From Nosology, Biomarkers And Machine Learning, Isabel Milano Jan 2019

The Characterization Of Alzheimer’S Disease And The Development Of Early Detection Paradigms: Insights From Nosology, Biomarkers And Machine Learning, Isabel Milano

CMC Senior Theses

Alzheimer’s Disease (AD) is the only condition in the top ten leading causes of death for which we do not have an effective treatment that prevents, slows, or stops its progression. Our ability to design useful interventions relies on (a) increasing our understanding of the pathological process of AD and (b) improving our ability for its early detection. These goals are impeded by our current reliance on the clinical symptoms of AD for its diagnosis. This characterizations of AD often falsely assumes a unified, underlying AD-specific pathology for similar presentations of dementia that leads to inconsistent diagnoses. It also hinges …


Pattern Discovery In Brain Imaging Genetics Via Scca Modeling With A Generic Non-Convex Penalty, Lei Du, Kefei Liu, Xiaohui Yao, Jingwen Yan, Shannon L. Risacher, Junwei Han, Lei Guo, Andrew J. Saykin, Li Shen, Michael W. Weiner, Paul Aisen, Ronald Petersen, Clifford R. Jack, William Jagust, John Q. Trojanowki, Arthur W. Toga, Laurel Beckett, Robert C. Green, John Morris, Leslie M. Shaw, Zaven Khachaturian, Greg Sorensen, Maria Carrillo, Lew Kuller, Marc Raichle, Steven Paul, Peter Davies, Howard Fillit, Franz Hefti, David Holtzman, Charles D. Smith, Gregory Jicha, Peter A. Hardy, Partha Sinha, Elizabeth Oates, Gary Conrad Oct 2017

Pattern Discovery In Brain Imaging Genetics Via Scca Modeling With A Generic Non-Convex Penalty, Lei Du, Kefei Liu, Xiaohui Yao, Jingwen Yan, Shannon L. Risacher, Junwei Han, Lei Guo, Andrew J. Saykin, Li Shen, Michael W. Weiner, Paul Aisen, Ronald Petersen, Clifford R. Jack, William Jagust, John Q. Trojanowki, Arthur W. Toga, Laurel Beckett, Robert C. Green, John Morris, Leslie M. Shaw, Zaven Khachaturian, Greg Sorensen, Maria Carrillo, Lew Kuller, Marc Raichle, Steven Paul, Peter Davies, Howard Fillit, Franz Hefti, David Holtzman, Charles D. Smith, Gregory Jicha, Peter A. Hardy, Partha Sinha, Elizabeth Oates, Gary Conrad

Neurology Faculty Publications

Brain imaging genetics intends to uncover associations between genetic markers and neuroimaging quantitative traits. Sparse canonical correlation analysis (SCCA) can discover bi-multivariate associations and select relevant features, and is becoming popular in imaging genetic studies. The L1-norm function is not only convex, but also singular at the origin, which is a necessary condition for sparsity. Thus most SCCA methods impose 1-norm onto the individual feature or the structure level of features to pursuit corresponding sparsity. However, the 1-norm penalty over-penalizes large coefficients and may incurs estimation bias. A number of non-convex penalties are proposed to reduce …


Machine Learning Methods For Medical And Biological Image Computing, Rongjian Li Jul 2016

Machine Learning Methods For Medical And Biological Image Computing, Rongjian Li

Computer Science Theses & Dissertations

Medical and biological imaging technologies provide valuable visualization information of structure and function for an organ from the level of individual molecules to the whole object. Brain is the most complex organ in body, and it increasingly attracts intense research attentions with the rapid development of medical and bio-logical imaging technologies. A massive amount of high-dimensional brain imaging data being generated makes the design of computational methods for efficient analysis on those images highly demanded. The current study of computational methods using hand-crafted features does not scale with the increasing number of brain images, hindering the pace of scientific discoveries …